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Abstract. Deep Packet Inspection (DPI) is widely used in network sys-
tems and the processing speed of DPI is very critical. The core part
of existing DPI is signature matching, and many researchers focus on
improving the signature matching algorithms. In this paper, we work
from a different angle: the scheduling of signature matching. We pro-
pose a method called Delayed Signature Matching (DSM), which could
greatly reduce the number of matching attempts. In the method we do
not always immediately match received packets to the signatures, but
instead we predefine some protocol specific rules, and evaluate the pack-
ets against these rules first to decide when to start signature matching
and which signatures to match, thus eliminate lots of useless matching
attempts. The proposed DSM method is very suitable for the network
auditing scenario since recognizing a flow at the earliest possible time is
not required, and the potential seconds of delay brought in by DSM is ac-
ceptable. We also find that in the DSM method the number of matching
attempts for a flow is unrelated to the number of supported protocols,
which is a good property since the number of supported protocols keeps
growing. Finally, we implement a prototype of the DSM method in the
open source DPI library nDPI, and find that it can reduce the signature
matching time 27%∼40%.

Keywords: DPI · Deep Packet Inspection · Delayed Signature Matching
· DSM · Fast Path.

1 Introduction

Deep Packet Inspection (DPI) is integrated into many network system today
[22, 1, 7, 8, 11, 6]. For example, DPI is used in Firewalls [22], network security
monitors [13], and intrusion detection systems (IDS) to recognize the protocols
of packets for checking further threats in the application layer. Network auditing
systems, which may be required by government regulations (e.g., for monitoring
public Wi-Fi services), or by the companies (e.g., for monitoring employees’
Internet accessing), also use DPI to recognize which websites users are visiting
and which applications users are using.
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The processing speed of DPI is quite critical, since one DPI instance usually
needs to process traffics from many different terminals, and the volume of the
data usually is very big. Thus, the performance is an important consideration
for DPI products. For example, commercial products like Qosmos 4 and PACE
5 claim to handle up to 9∼10 Gbps per core, and open source solution like nDPI
could handle up to 8.85 Gbps per core as well [1]. Improving the DPI performance
could enable the same cores to support more traffics6, or reduce the number of
needed CPU cores. Since the core work of existing DPI is to match received
packets against known signatures (or called patterns), many researchers tried to
improve the signature matching algorithms, e.g., by modifying the construction
of deterministic finite automaton (DFA) [11, 7].

In this paper, we propose a new method focusing on the scheduling of sig-
nature matching. By looking closely at existing signature matching process, we
find some signature matching attempts are wasted since the needed packets have
not been received yet. So we propose a method called Delayed Signature Match-
ing (DSM). In the method, we predefine some rules for targeted protocols, and
evaluate the received packets against these rules. If the packets pass the rules,
we could start signature matching with the signatures defined by the rules. If
the packets do not pass the rules eventually, we will use the original process-
ing method as usual. Intuitively, these rules produce fast paths in the signature
matching (quickly find and match against the proper signatures). We analyze
the correctness and performance of the DSM method. We also find an interest-
ing property of DSM: the number of signature matching attempts needed for a
flow is constant, and does not grow with the number of supported protocols as
the original method does. The delay with DSM is only several seconds at most,
which is certainly acceptable in the network auditing scenario. We implement a
DSM prototype supporting HTTPS, HTTP, FTP, and POP3 protocols in the
open source DPI library nDPI [1, 2], and evaluate it with different datasets. We
find that with DSM support for only 4 protocols, the prototype has 27%∼40%
performance boost in the signature matching.

2 Related Work

There are many existing DPI systems [3, 4, 1, 13, 17]. The performance compar-
isons among some of them can be found in [6]. The DPI systems can be roughly
classified [17] into regex-only [3, 4, 15] and hybrid [1, 13, 17] (i.e., combining regex
and code) types. L7 filter [3] is a typical regex-only DPI system, which contains
many regexes defined for different protocols, and a protocol’s detection mainly
relies on its regex (unfortunately, the regexes have not been updated since 2009).
nDPI [1, 2] is a hybrid DPI system, and is forked from OpenDPI, which is an

4 https://qosmos.com/
5 https://ipoque.com/products/dpi-engine-rsrpace-2
6 For example, the mobile subscribers of China Mobile Inc. consumed 23% more traffics

in 2018 Q1, comparing with 2017 Q1.
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open source classifier derived from early versions of PACE (PACE is a commer-
cial DPI product mentioned before) according to [6]. nDPI mainly uses code to
match different protocols; however, it also supports automaton and Hyperscan
[4] in some steps like host name match. nDPI is open source in Github and under
active development by the ntop company. It can detect 240+ protocols now, and
is used in another ntop product nProbe as well. nDPI’s guess protocol id also
acts as a fast path to find the correct protocol parser; however, it is based on the
ports and the protocol field of IP header of one packet only, and can not fully
eliminate useless matching attempts as well (we will show that in Section 3).

Many researchers focus on developing new algorithm to speed up the match-
ing of patterns. Kumar et al. proposed Delayed Input DFA [11] which substan-
tially reduces space requirements as compared to a DFA. Dharmapurikar et al.
proposed to store signatures in bloom filters to implement matching in hardware
[12]. Bremler-Barr et al. proposed to use repetitions in flows to skip repeated
data by modifying the Aho-Corasick Algorithm [7]. On the other hand, recently,
the privacy of deep packet inspection is gaining more attentions [8–10, 16], since
detecting patterns in encrypted traffics like HTTPS is demanded [14], and at the
same time DPI is increasingly running as a service in the public cloud platforms.
These performance or privacy improvement researches usually are orthogonal to
the DSM method proposed in the paper, since they focus on the exact matching
algorithms, and the DSM method focuses on the scheduling of matching.

3 A Motivating Example

We here use an FTP example to describe how the DPI process works and why
there are rooms to improve. We use the process of nDPI [1, 2] for example, and
other DPI engines like [3] are similar in general.

We show the first 9 packets of a typical FTP connection in Fig. 1. It contains
a 3-way TCP handshake, and later USER and PASS commands to authenticate
the client “demo”.

We then show how the packets of the FTP connection in Fig. 2 are processed
by the nDPI engine. Packets are processed in flows in nDPI and all the packets
of the FTP connection belong to the same flow. The first 3 packets are processed
by 10∼12 protocol parsers for signature matching, since only a few parsers are
interested in and register for the TCP and no payload type packets, and some
parsers later find the flow does not match them at all so they exclude themselves
for the flow early. For packet #4, the engine first tries the guessed FTP protocol
parser based on port 21; however, the FTP parser still cannot confirm that it is an
FTP flow at that time (it needs more packets to confirm). The following packets
are still no match for detection, and only more parsers exclude themselves for the
flow. Finally, the packet #7 with reply code 331 makes the FTP parser believe it
is an FTP flow and complete the detection. We can calculate that these protocol
parsers are called 175 times in total to complete the FTP detection.

We can see that there are some matching attempts wasted in the processing.
For example, matching the packet #4 to the 103 protocol parsers is doomed to
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FTP Client FTP Server 

1. SYN 

2. SYN + ACK 

3. ACK 

4. 200 Microsoft FTP Service 

5. ACK for Packet #4 

6. USER demo 

7. 331 Password required for demo 

8. ACK for Packet #7 

9. PASS password 

Fig. 1. The initial packets transferred during a typical FTP connection.

Check packet #1 against 12

registered protocol parsers (for 

TCP and no payload type). 2

protocol parsers exclude 

themselves for future packets of 

the flow 

Check packet #2 against the 10

left protocol parsers 

No match 

Check packet #3 against the 10

left protocol parsers. 4 parsers 

further exclude them for future 

packets of the flow 

No match 

Check packet #4 against FTP 

protocol parser first 

No match 

Check packet #4 against 103

registered protocol parsers (for 

TCP with payload type). 72

protocol parsers exclude 

themselves for future packets of 

the flow 

Still no match (need more info) 

Check packet #5 against the 6 left 

protocol parsers 

No match 

Check packet #6 against FTP 

protocol parser first 

No match 

Check packet #6 against the 31 left 

protocol parsers 

No match 

Check packet #7 against FTP 

protocol parser first: Match 

No match 

Fig. 2. The exact steps of how the packets in previous FTP connection example are
processed. It shows that the protocol parsers are called 175 times (12 + 10 + 10 + 1 +
103 + 6 + 1 + 31 + 1) in total for signature matching to finish the detection. We could
reduce the number to only 7 with DSM.
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be useless. Though nDPI uses code-based match for FTP protocol, the situation
is similar for regex-based DPI engines like L7 Filter and Hyperscan. In L7 Filter
the engine keeps appending new packet’s content to its flow’s received content
buffer (2048 bytes at most) and matching the buffer against all protocols’ pat-
terns [3]. L7 Filter may use the pattern “ˆ220[\x09-\x0d -∼]*ftp|331[\x09-\x0d
-∼]*password” [5] for accurate FTP detection, then it also needs to keep match-
ing the buffer to all patterns until it gets the packet #7 that contains the 331
reply code. Even for more efficient regex matching library like Hyperscan [4]
which only needs to feed newly received packet into the library, the whole signa-
ture database of all protocols needs to be matched to the newly received packets
again and again. Hyperscan also officially advises to avoid big “union” database
if possible for performance7, which makes sense in the regex matching theory
[15]. In this paper, we would like to reduce the match searching between the
contents and patterns in essence. With the DSM method proposed in the paper,
the DPI engine only needs to match each packet against one protocol pattern
7 times (in contrast to the original 175 times) in total for the FTP connection
example.

4 Delayed Signature Matching

The basic idea of Delayed Signature Matching (DSM) is that instead of immedi-
ately matching received packets to the signatures, we wait for “enough” packets
first. Then the problem is how to determine that currently received packets of
a flow are enough. Our solution is to predefine sequences of rules for different
protocols, and then evaluate the received packets against the rules first. When
the packets pass the sequence of rules of a protocol, we could start signature
matching with the protocol’s signature. Any failures during the process (e.g.,
failed to pass the rules) lead to using the original processing method as fallback.
Note the rules should be fast to evaluate, and the passing of a sequence of rules
should indicate the flow has high probability to match corresponding protocol
(otherwise the matching will be wasted). The sequences of rules in effect cre-
ate fast paths in the signature matching, since the packets could directly match
against proper signatures so fewer matching attempts are needed.

We show the framework of the delayed signature matching (DSM) method in
Algorithm 1. The first flow maintaining step includes finding or creating a flow
for the input packet, and updating the variable values used in the primitives
(introduce later) for the flow. Then for a flow that is not detection completed,
the engine checks whether the flow is marked to use the original processing
method, or marked to call selected protocol parsers (introduce later) only. In the
two cases the engine processes the packet accordingly. For other cases it checks
whether the packet could match any DSM rule. If so it will use the instruction of
the rule to determine what to do next, like calling the protocol parsers selected

7 http://intel.github.io/hyperscan/dev-reference/performance.html#unnecessary-
databases
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by the rule, and waiting for the next packet, etc. At last, if the packet could not
match any rule, the engine uses the original processing method as fallback.

We can see the rules are the core part of DSM and in the left part of the
section we will focus on introducing them, and use the rules of several protocols
as examples.

Algorithm 1 Packet processing with delayed signature matching (DSM).

Input: a packet, DSM rules of protocols.
1: Do flow maintaining: find or create the flow for the packet
2: if The flow is not detection completed then
3: if The flow is marked to use the original processing method then
4: Use the original processing method
5: else if The flow is marked to call the selected protocol parsers only then
6: Call the selected protocol parsers
7: else if Match any DSM rule then
8: Follow the rule’s instruction, which could be:
9: - evaluate next rule and follow its instruction

10: - call the rule’s selected protocol parsers
11: - mark the flow to use the original processing method, and process the buffered

packets and current packet
12: - buffer the packet and wait for next packet
13: - mark the flow to use currently selected protocol parsers only
14: else
15: Use the original processing method
16: end if
17: end if

First, we introduce a few types of primitives that we use in the DSM rules.
These primitives are all simple and can be implemented efficiently, which make
sure the rules can be checked very quickly.

– protocol type comparisons. For example, protocol ==TCP.

– server port arithmetic comparisons, including ==, ≥, etc. For example,
server port == 21.

– pkt num arithmetic comparisons, including ==, ≥ etc. pkt num stands for
the number of total packets have been received in the flow.

– payload pkt num arithmetic comparisons. payload pkt num represents the
number of packets that have payload have been received in the flow.

– tls pkt num arithmetic comparisons. tls pkt num means the number of to-
tal packets that are of Transport Layer Security (TLS) record layer type [19]
have been received in the flow. We implement the primitive by simply check-
ing the first byte for 20 (change cipher spec), 21 (alert), 22 (handshake), and
23 (application data) values.

– payload[i] ==‘A’ equation check. It means to check whether the byte at
index i of the packet payload is equal to char ‘A’.
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– payload(i, len) ==“ABC” equation check. It means to check whether the len
bytes start from index i of the packet payload are equal to string “ABC”.

Then, we show the processing of FTP and POP3 protocols with DSM rules
in Fig. 3. In the flowchart, the DSM rules are represented by diamonds, and
the instructions of rules are represented by rectangular boxes following the rules.
For FTP, after the common flow maintaining process, and assuming the engine
needs to check the packet with DSM rules (e.g., the flow is not detection com-
pleted etc., as mentioned in the DSM framework previously), the engine checks
the rule protocol ==TCP first. If the packet passes the rule, it checks another
rule on whether the port is the common FTP port 21. If not it will further
check other port rules if any. If port matches 21 and it will check whether the
payload pkt num ≥ 4, which means the packet #7 in Fig. 1 should have been
received for the flow. If the rule is not satisfied, another rule pkt num ≥ 10 will
be checked, which means whether a threshold number of packets (here we set to
10, same as nDPI) have been received. If pkt num exceeds the threshold, DSM
will fall back to the original method, otherwise it will wait for the next packet. If
the rule payload pkt num ≥ 4 satisfies, it will check the payload[0] against ‘P’,
i.e., the first character of the “PASS” command. If the rule satisfies again, then
there are enough evidences that it is an FTP flow, so the rule selects the FTP
protocol parser to parse all packets received so far. If the result of the parser
is matched then we mark the flow as detection completed; the flow successfully
goes through the fast path created with DSM rules. Otherwise, it is not an FTP
flow and we exclude FTP from the possible protocol list and use the original
packet processing method.

The DSM rules of the POP3 protocol are quite similar to the rules of FTP,
except that we now match the “USER” command of POP3 [21] in the rule, i.e.,
payload[0] ==‘U’, and only 2 packets with payload would be enough for the
POP3 parser to recognize the flow, i.e., payload pkt num ≥ 2.

At last, we show the DSM rules we created for HTTPS in Fig. 4. HTTPS is
becoming prevalent and more than 30% top 1,000,000 websites use HTTPS by
default now (i.e., redirecting HTTP pages to URLs with HTTPS) 8. Similarly,
the protocol rule and server port rule are checked first. We then check whether
there is at least one TLS packet received before (e.g., the Client Hello mes-
sage), and payload pkt num is greater than or equal to 3 (e.g., the Client Hello,
Server Hello, and Certificate messages) [19]. If both rules are satisfied then the
flow is highly likely to be an SSL connection now, so the HTTPS (TLS) protocol
parser is selected. Similarly, if the parser does confirm the application protocol
is matched, we mark the flow as detection completed. Otherwise, however, we
cannot simply exclude SSL protocol from the flow, because the flow may be of
TLS type, but the TLS protocol parser needs more packets to further detect
its application protocol. So we add a rule to check whether it is a TLS flow
by checking whether the server name has been gotten (either from the Server
Name Indication (SNI) extension [20] of TLS, or from the server’s certificate),

8 https://statoperator.com/research/https-usage-statistics-on-top-websites/
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protocol == TCP?

Start

Get next packet, do 
flow maintaining

Use the original 
processing method 

for the flow

N

server_port == 21

payload_pkt_num 
>= 4

payload[0] == ‘P’

Try the parser of 
FTP

Matched?

Mark the flow as 
detection completed

Exclude FTP parser 
for the flow
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Y
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payload_pkt_num 
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payload[0] == ‘U’

Try the parser of 
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Y

Y

N

N
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Exclude POP3 
parser for the flow

YN

N

Fig. 3. The DSM rules for FTP and POP3. The rules are represented by diamonds, and
the instructions of rules are represented by rectangular boxes following the rules. Flows
that could pass through the DSM rules to the downright green box of the flowchart are
favored, since they pass through the fast path and have very few matching attempts.
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or whether the TLS process has passed some stages (represented by ssl stage).
If we confirm that it is a TLS flow, we will mark the flow to always use the
selected TLS protocol parser only. Otherwise, we exclude the TLS protocol from
consideration and use the original processing method as well.

protocol == TCP?

Start

Get next packet, do 
flow maintaining

Use the original 
processing method 

for the flow

N

server_port == 
443

tls_pkt_num >= 1

payload_pkt_num >= 
3

Try the parser of HTTPS 
(i.e., SSL)

Matched?

Mark the flow as 
detection completed

Got server name 
or ssl_stage>0?

Mark the flow to use 
HTTPS parser in 

future 

Exclude HTTPS parser 
for the flow

check other port 
rules (show in other 

Figures)

Y

Y

Y

Y

Y

Y

N

N

N

N

pkt_num > 10

YN

Fig. 4. The DSM rules for HTTPS. Similarly, flows that could pass DSM rules to the
two downright green boxes of the flowchart are favored.

Note that we need to periodically check for flows that applied DSM (i.e.,
having buffered packets) but got stuck for some time, and use the original pro-
cessing method to process them. This is because the flows may satisfy some
rules of a protocol but cannot pass through them. For example, the server port
rule is matched but the payload pkt num is not enough. On the other side the
flows may not have enough packets to eventually satisfy the threshold rule, i.e.,
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the pkt num ≥ 10 rule. If we do not use the original processing method to
process them, they will not be processed by any parsers even if some parsers
can recognize them. We set the stuck time threshold to 2 seconds, which should
be sufficient for existing protocols. Also, for efficiency such periodical check for
stuck flows could be done together with existing idle flow cleaning process.

Another thing needs to be noted is how we define DSM rules. First, we
prefer to wait for a bit more-than-enough number of packets before we begin
the signature matching (e.g., for FTP we require that payload pkt num ≥ 4
but not 3). This is because more packets usually imply more evidences on the
type of the flow, and thus ensure higher successful probability of the selected
protocol parsers. This may not be suitable for the scenarios that require the
earliest possible flow recognization like Firewall or IDS [22], but is suitable for
network auditing. Second, on the other side, we may intentionally make the rules
a bit “relaxed” (e.g., tls pkt num >= 1 for the TLS protocol) to suit different
auditing scenarios and packet transmission strategies, because we want to make
the rules more “portable” (written once and suitable for all). For example, in one
of our network auditing scenarios, we mainly capture packets of one direction
(upstream), and we also find TLS may transmit different record layer packets
in one TCP packet. Both the first and second considerations make us prefer
to define DSM rules waiting for more packets than the corresponding parser
actually needs.

5 Analysis

We give analysis on the correctness and performance of the DSM method below.

5.1 The Correctness of the DSM Method

The delayed signature matching method essentially is to use the delayed pack-
ets to determine which protocol parsers to try for a flow, and there are four
cases after trying the selected protocol parsers. The first case is that the se-
lected protocol parsers fully detect the flow’s protocol and we mark the flow as
detection completed. In this case, the correctness of our method relies on the
self-containing property of the protocol parsers, which means they should not
need other protocol parsers to process the packets first before they can correctly
recognize a flow. The self-containing property should be a reasonable assumption
in reality, otherwise the codebase would be very fragile since users may change
the protocol set to match for their environment. We also confirm that all the
protocol parsers we checked in nDPI do have the property.

The second case is that the selected protocol parsers do not recognize the
flow’s protocol at all, and then we exclude the corresponding protocol and use
the original processing method. The correctness of the DSM method in this case
relies on the correctness of the decision that the selected protocol parsers cannot
recognize the flow now and in the future. When the protocols are simple it is
easy to make the decision based the rules.



DPI with Delayed Signature Matching in Network Auditing 11

The third case is that the selected protocol parsers recognize the flow as their
types for sure, but they need more packet to act as detection completed, and we
now simply mark the flow to always use the selected protocol parsers in future.
The correctness of the DSM method in this case relies on correctly determining
that the protocol parsers have recognized the flow and just need more packets
for changing states. Like in HTTPS, we use the server name and ssl stage as the
indicators of TLS detection.

The fourth case is the selected protocol parsers are still unsure on the pro-
tocol of the flow. We didn’t show any example on the case previously, since we
intentionally avoid the case when creating the rules. However, there may have
complicated protocols that it is hard to bypass this situation when creating their
rules. If so, we could not apply DSM to these protocols in the first place, or if
we do use DSM, we could simply switch to use the original processing method
then (but do not exclude the selected protocol parsers), and the correctness is
also guaranteed.

We note that the DSM rules could be misled by protocol masquerading mech-
anisms like FTE [17], since they intentionally change the signatures of protocols
to mimic other protocols. Defeating them is out of the scope of DSM and should
be the responsibility of the protocol parsers. For example, if the mimicked pro-
tocol’s parser is augmented to use new detection mechanisms like entropy-based
detection [18], DSM could still successfully detect the original protocol.

5.2 Performance Analysis

We analyze the computation cost first. In order to simplify the analysis, we
assume a protocol has only one payload packet type (UDP or TCP payload).
We assume there are n protocol parsers interested in the payload type, and the
corresponding protocol parser needs m packets to mark a flow of the protocol
as detection completed. Then, for the original processing method, the number
of calls to signature matching So can be defined as below, where ai represents
the ratio of the number of remaining parsers to the number of original parsers
after processing the ith packet (i starts from 1):

So = n + a1n + a1a2n + ... + a1a2...am−1n, when m > 1. (1)

Now we use p to represent the possibility that the DSM method successfully
matches a flow of the protocol, i.e., in either case #1 or case #3 as described
in Section 5.1, and we assume the rules select k protocol parsers. Then we only
need at most km calls to signature matching in the two cases (since protocol
parsers may even exclude themselves from the detection of the flow later). For
other two cases, we at most call signature matching km + So times (i.e., DSM
fails and the engine uses the original method as fallback). So we could represent
the number of calls to signature matching of DSM method as below:

Sd = pkm + (1− p)(km + So). (2)
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Usually we create rules that have high probability to successfully match the flows
of the protocol, so p is approximate to 1 (we will later confirm that in Section
6) and then Sd is approximate to km:

Sd ≈ km, when p ≈ 1. (3)

The value of km usually is much smaller than n (k usually is 1∼2, m < 10). Also
we can see a very promising property from the equation: Sd is constant and not
related to n now, which means adding new protocol parsers will not increase the
computation cost, in contrast to the original processing method.

On the other hand, the evaluation of DSM rules does add some costs to
the the whole processing. However, we intentionally make the rules simple, and
usually only several increment operations and several comparisons are needed.
So the added cost is very small, which is also confirmed in our experiments.

We also analyze the extra delay when using DSM. Note that if we create
rules that strictly fit to the requirements of the protocol parser (i.e., do not
waiting for more packets), and a flow’s packets match the rules as expected,
then there is no extra delay for the flow comparing with the original processing
method. This is because, even using the original processing method, the same
set of packets needs to be received before the flow becomes detection completed.
However, there are some cases that DSM has extra delay. First, if we create
rules that need more packets than the parser actually needs (for the reasons we
described before), we will have delay by waiting for extra packets. Depending on
the number of extra packets, DSM may have several RTT (Round Trip Time)
delay. One RTT usually is at most several hundred milliseconds in the Internet,
so such delay is in the order of second at most. Second, for the flows that enter
DSM process but get stuck there because of no matching rules and not enough
packets, the extra delay is related to the stuck threshold time we set (at most 2
times of the threshold). Thus for the 2-second threshold we set, corresponding
delay is 4 seconds at most.

6 Evaluation

We implement our DSM method prototype in the popular open source DPI li-
brary nDPI [1, 2], with about 600 lines of code. The prototype contains the DSM
rules of 4 protocols: HTTPS, FTP, POP3, and HTTP. It is open source for re-
search usage at https://github.com/zyingp/nDPI/tree/fastpath9. We do
all experiments on a PC installing Ubuntu 16.04 LTS, with Intel(R) Core(TM)
i5-4590 CPU @ 3.30GHz×4 and 16 GB memory.

We prepare 6 different datasets for the experiments, as shown in Table 1.
The datasets come from two testbeds and a web crawler. We have two testbeds
(named testbed A and B) for our network auditing tests, and in both testbeds
we mainly capture one side of the traffics (i.e., upstream only, except for several

9 We also put our raw experiment results there.
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special TCP ports) for auditing. One testbed contains 2 China Mobile enter-
prise WiFi gateways (i.e., hotspots), with 9 computers and phones connected.
Another testbed contains 1 WiFi gateway with 2 computers and 1 phone con-
nected (mainly computer traffics). TB A36, TB A79, and TB A304 datasets are
from the same testbed A but captured at different times and have different sizes.
TB B326 is from the testbed B. In order to test DSM with other traffic patterns,
we also used a crawler running on an iPad to browse Alexa Top 100 and Top 500
websites 10 and got two full traffic traces (i.e., both upstream and downstream
traffics) named Top100 and Top500.

Table 1. The properties of the datasets.

Name Size (MB) Time (hour) Num. of flows Num. of pkts Traffic description

TB A36 36.2 30.7 12895 133610 upstream, computer & phone
TB A79 79.6 23.9 30735 422966 upstream, computer & phone
TB A304 304.6 103.4 110174 1599281 upstream, computer & phone
TB B326 326.4 93.2 24970 1383572 upstream, mainly computer
Top100 135.2 0.6 3701 222924 both directions, tablet
Top500 685.3 3.1 37473 1035565 both directions, tablet

We first ensure that the DSM method (i.e., the engine only processes the
aforementioned four protocols with DSM rules, and processes other protocols
with the original method) detects exact the same protocols as the original
method alone for different datasets (e.g., the same 240+ protocols nDPI cur-
rently supports). During that we fix several implementation bugs. We also dis-
cover a bug of nDPI at that time (in the ndpi detection giveup function, the
protos union in ndpi flow struct is always used as ssl type while it sometimes is
of http type).

We then check the numbers that protocol parsers are called for these datasets,
and show the result in Fig. 5. The result is very promising; the DSM method
reduces about 42% (for TB B326 dataset) to 76% (for Top100 dataset) of the
calls needed in the original method, with DSM rules only for the four protocols. It
is reasonable considering the great reduction of parser called times for protocols
like FTP.

Next we test the processing throughput of the whole DPI process. We run
the built-in ndpiReader program 15 times for each dataset, discard the first
5 runs whose results may not be stable yet (since the program has large file
I/O), and calculate the average of the left 10 runs (we use the same strategy for
later experiments as well). We show the result in Fig. 6. When DSM is used,
the throughputs all are higher than the original method without DSM: speed
up about 20% for the TB A* datasets, 11% for TB B326, and about 7% for
Top100 and Top500 datasets. The improvement is not as much as the previous

10 https://www.alexa.com/topsites
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Fig. 5. Comparison on the numbers of the protocol parsers are called. The DSM method
omits about 42%∼76% of the calls needed in the original method.

experiment. This is because here the program needs to do more work. The whole
process includes loading packets from dataset files, packet unpacking, flow main-
taining, and signature matching. We only improve the signature matching part.
The other parts amortize the improvement on signature matching, especially for
datasets like Top100 and Top500 which have more packets/traffics in a flow so
signature matching consumes relatively less time in the whole process.

�
��
�
�
�
�
��
	
o�
�
��


	
�
�


�o
t�
�
/�
h

1

2

3

4

5

6

7

8

9

��������
� !"36 � !"79 � !"3)4 � ! 326 ���1)) ���5))

Fig. 6. Processing throughputs of the DSM method and the original method (loading
packets from files needs to be done at the same time). DSM improves over the original
method about 20% for the TB A* datasets, 11% for TB B326, and about 7% for the
Top100 and Top500 datasets.

In order to get more accurate results on how the DSM method improves
the DPI process, we evaluate it in refined scopes. First, we compare only the
time spent on signature matching, which includes basic packet analysis (e.g.,
processing tcp flags), calling protocol parsers, and also rule evaluation for DSM.
The result is shown in Fig. 7. We can see DSM could improve over the original
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method about 27%∼40%. Then, we check the DSM’s improvement on the whole
packet processing (including all the work the program does in Fig. 6 except
loading packets from files). This is more interesting since it contains actually all
the work after we get a packet, either from pcap file or live capture (via libpcap,
DPDK, or PF RING). We show the result in Fig. 8. We can see that the DSM
method consumes only 78%∼90% of the time of the original method (improving
10%∼22%).
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Fig. 7. The ratio of the DSM method to the original method on the time spent only
on signature matching (and including rule evaluation for DSM). DSM improves over
the original method about 27%∼40%.
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Fig. 8. The ratio of the DSM method to the original method on the time spent on
whole packet processing (excluding the time spent on loading packet from files, but
including the time on all other work like packet unpacking, flow maintaining, and
signature matching). DSM improves over the original method about 10%∼22%.
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Finally, we would like to check the effectiveness of current DSM rules. We
calculate the number of flows that try the DSM selected protocol parsers (i.e., for
the coverage ratio), and we also calculate the number of flows that try the DSM
selected protocol parsers but fail to complete detection and turn to the original
method as fallback (i.e., for the fail ratio/successful ratio). We show the result
in Fig. 9. We can see that the coverage of our DSM rules is 30%∼60% for these
datasets, which is promising since we only implement rules for four protocols.
Most of the coverage is due to the DSM rules of two protocols: HTTPS and
HTTP. Also, the flows tried DSM but failed have a very small proportion, only
0.2%∼2%. We also look into the fail cases and find the majority is due to the
wrong protocol exclusion implementation of the nDPI HTTP protocol parser
(e.g., a retransmission of a partial HTTP request may not have a line structure
and the HTTP protocol parser will wrongly conclude that it is not HTTP).
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Fig. 9. The flow coverage and successful ratio of the DSM rules in our prototype. The
flow coverage of current DSM rules is 30%∼60%. The ratio of flows tried DSM but
failed (still fell back to the original method) to all flows tried DSM is only 0.2% to 2%.

7 Conclusions

In this paper we propose delayed signature matching (DSM) for reducing useless
signature matching attempts. We achieve that by defining rules to tell when the
signature matching could start for a flow and which protocol parsers to use. If
a flow does not match any rules then the original method is used. We analyze
the DSM method to show its correctness and efficiency. We also show the de-
lay caused by DSM is at most several seconds which is affordable in network
auditing, and may also be affordable in other scenarios that do not need real-
time actions to packets. We implement DSM rules for four protocols including
HTTPS in the open source DPI library nDPI, and evaluate them with different
datasets. The result shows that the DSM method accelerates signature matching
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about 27%∼40%, and accelerates the whole process 7%∼20% (the more the sig-
nature matching time accounts for the total time, the more that whole process
is accelerated).
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