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Abstract

Recently with the emergence of mobile sensor networks,
localization for such networks has gained much attention,
and many localization algorithms have been proposed.
Among them the Sequential Monte Carlo (SMC) based
algorithms are very popular because of their simplicity and
efficiency. However, most current SMC-based localization
algorithms implicitly assume there is no attacker in the
network, which may not be true in real applications. The
attackers, if any, may send false information by themselves
or through compromised nodes to disturb the localization.
In this paper, we present the design and evaluation of
a Secure Monte Carlo Localization algorithm, SecMCL.
SecMCL provides authentication to messages and employs
a new sampling method to defeat attacks. Simulation results
show that SecMCL greatly improves the localization accu-
racy of existing SMC-based localization method when there
are attacks. Also, compared with existing SMC localization
method, SecMCL incurs no communication cost (in terms
of number of messages) and achieves the same localization
accuracy when there is no attack.

1. Introduction

Localization is important in wireless sensor networks
since many applications and supporting techniques of the
networks require nodes to know their locations. E.g., appli-
cations such as habitat monitoring [1], wildlife tracking [2],
vehicle tracking [3], and volcano monitoring [4], as well as
supporting techniques such as geographic routing [5] and
geographic key distribution [6]. A straightforward solution
is to equip each node with a GPS receiver; however it is too
costly and only affordable in small networks.

Many localization algorithms have been proposed to en-
able nodes to estimate their locations in static networks [7]–
[11], assuming partial nodes (called beacons) know their lo-
cations (e.g., equipped with GPS receivers). However, when
these algorithms are used in mobile sensor networks (e.g.,
[2]), they suffer from high overhead and low performance

[12], [13], because they need to periodically restart the whole
localization process. When the mobility of the network is
high, the collected information may even already be stale
before being fed to the localization algorithm.

The Sequential Monte Carlo (SMC) based localization
algorithms, specially designed for mobile sensor networks,
are very popular in the research community [12]–[18]. They
are simple to implement [12], [13] and can even utilize the
mobility of nodes for localization. The key idea of SMC-
based localization is to represent the posterior distribution
of node’s location by a set of weighted samples, and in
each time unit, the samples are updated based on new
observations about beacons.

However, almost all the current SMC-based localization
algorithms do not consider the attackers in the networks.
In reality, the attackers may try to distort nodes’ location
estimations to make the localization failed. They may di-
rectly inject false messages into the network or let the com-
promised nodes broadcast false information. Many secure
localization algorithms have been proposed [19], but none
of them can be used for SMC-based localization.

In this paper, we present the design and evaluation of a
Secure Monte Carlo Localization algorithm, called SecMCL.
SecMCL follows the SMC localization framework [13],
however, it authenticates the messages and executes a new
sampling algorithm when it finds abnormity (i.e., cannot
obtain enough valid samples). Simulation results show that
the localization accuracy of SecMCL is much higher than
existing algorithms under attacks. Also, compared with
existing SMC localization algorithms, SecMCL does not
need additional messages (sending and receiving messages
are the most energy-consuming operations in sensor node
[20]), and achieves the same localization accuracy when
there is no attack (which makes it easier to be adopted by
network operators).

The rest of the paper is organized as follows. In Section
2 we review related work. In Section 3, we describe the
network and attacker models. In Section 4, we present the
design of SecMCL. Section 5 gives simulation results of
SecMCL. Finally we conclude this paper in Section 6.



2. Related Work
Many localization algorithms have been proposed for

mobile sensor networks [12]–[18], [21], [22] since tra-
ditional localization algorithms are inefficient in mobile
environments [12], [13]. Most of these algorithms use the
SMC method [12]–[18], which can naturally take advantages
of nodes’ mobility to improve accuracy. Other methods
like periodically restarting traditional localization algorithms
[21], [22] have high energy consumption or need additional
hardware (e.g., accelerometer [22]).

We briefly review the SMC-based localization algorithms
here. MCL [13] first proposed to use SMC [23] for local-
ization in mobile sensor networks. In MCL, each node’s
location is represented by a set of weighted samples. In each
time unit, nodes predict new samples based on samples in
previous time unit, and filter out invalid samples based on
new observations about 1-hop and 2-hop beacons. MCB [15]
reduced the time spent in sampling in MCL. It computes
a bounding box first, and then samples in the box to get
valid samples with higher probability. MMCL [17] used the
observations about all beacons at the same time, but not
only beacons within two hops. It needs to periodically flood
the beacon messages thus has high communication cost.
MSL*, MSL [18] and the algorithm in [12] improved MCL
by combing the information of common nodes within two
hops when filtering samples. However, they need additional
messages to pass sample or accuracy information. In [14]
and [16], the authors used SMC method for the cases that
range or angle-of-arrival (AoA) measurements are available.

All the mentioned SMC-based localization algorithms do
not consider the adversaries in the network. Although in
[13], the authors gave a section to discuss security, they
did not present a clear solution. Many secure localization
algorithms have been proposed [19]; however they all are
based on traditional localization algorithms, e.g., LMS by
Li et al. employs traditional DV-hop method to get distance
measurements in multihop networks [19]. Thus they are
inefficient in mobile sensor networks [12], [13]. In contrast,
our new secure localization algorithm presented in this paper
can even take advantages of network mobility.

3. Network Model and Attacker Model
Network model: The network consists of a set of com-

mon nodes and a set of beacon nodes. Beacons can always
know their locations through equipped GPS receivers. Both
the common nodes and the beacons may be mobile. The
maximum speed of all the nodes is vmax. The transmission
range of all the nodes is r. We assume each node a has
a private key K−1

a which is used to sign messages. Also
other nodes are able to verify signatures. Several public-key
libraries for sensor networks are available now [24].

Attacker model: We consider external and internal at-
tacks. In the external attacks, the adversaries do not have

the security credentials of sensor nodes. However they can
still inject false messages into the network. Such attacks can
be easily defeated by message authentication. In the internal
attacks, the adversaries have compromised a small number
of nodes (beacons or common nodes). Thus they can let the
compromised nodes stop sending messages, or even worse,
send false but authenticated messages. Specifically, we as-
sume the compromised beacons may send false locations in
the HELLO packets, and the compromised common nodes
may forward the location claims received from common
nodes (we call the behavior as malicious relaying, since
normal nodes only forward the location claims received
directly from beacons as explained later). Currently we do
not consider the defense of wormhole attacks [25] here.

4. SecMCL: A Secure Monte Carlo Localiza-
tion Algorithm

In this section, we present the design of SecMCL, which
includes the design of communication protocol and the de-
sign of localization algorithm. Same as MCL [13], SecMCL
only uses the observations on 1-hop and 2-hop beacons.
Different from some SMC-based algorithms [12], [17], [18],
we do not use the information of common neighbor nodes or
2-hop-away beacons, because 1) obtaining such information
requires extra messages [12], [17], [18] and 2) the improve-
ment on localization accuracy is limited in some cases, e.g.,
improvement is less than 0.1r in figures 12, 13 of [12] when
vmax > 0.4r or sd > 2 (sd is the seed/beacon density).

4.1. Communication Protocol

Similar to previous algorithms [12]–[18], we assume time
is divided into discrete time units. In each time unit, nodes
need to get their current locations since they moved in the
last time unit. Before running the localization algorithm,
nodes will communicate to get the required information as
shown below.

Communications in SecMCL
Beacon B: claim = sig

K−1
B

(IDB , loct, t)

Beacon B−→*: sig
K−1

B
(HELLO, IDB , claim)

Node N−→*: sig
K−1

N
(HELLO, IDN , {claimi})

First, the beacons sign messages containing their location
claims and broadcast. The location claim consists of node
id (IDB), current location (loct), and current time (t). The
location claim is also signed to ensure others cannot generate
fake claims. Second, the common nodes sign messages
containing the location claims received from their neighbor
beacons and broadcast. Then the communication is end.
After this phase, all the common nodes know their 1-hop
and 2-hop neighbor beacons. The number of messages used
is the same with MCL [13].



4.2. Location Estimation Algorithm

Our location estimation algorithm consists of two pro-
cesses: a process same as the MCL [13] and a new sampling
process. If the first process ends without abnormity (i.e., get
enough samples), the second process is skipped, otherwise
the second process is started.

SecMCL first executes the MCL process. Following the
SMC method [23], MCL [13] running at each node contains
3 steps: 1) the initialization step, which is to randomly draw
N samples in the deployment area to a set of samples, L0,
2) the prediction step, which is to predict new samples based
on previous set of samples Lt−1 and the transition equation

p(lt|lt−1) =

{ 1
πv2

max
if d(lt, lt−1) < vmax

0 if d(lt, lt−1) ≥ vmax,
(1)

where lt−1 is a sample in Lt−1, and d(lt, lt−1) is the distance
between two samples, and 3) the filtering step, which is to
discard the samples that do not satisfy the filter condition,
for any sample l

filter(l) = ∀s ∈ S, d(l, s) ≤ r ∧ ∀s ∈ T, r < d(l, s) ≤ 2r,
(2)

where S and T are the 1-hop neighbor beacons and 2-hop
neighbor beacons of the node respectively. The prediction
and filtering steps are repeated, until N valid samples have
been acquired.

When there are no attacks, MCL can always draw enough
samples, because sampling near the real location of the
node can always get valid samples. However, when the
adversaries have compromised part of nodes, the predication
and filtering steps may fail to get enough valid samples.
The compromised beacons may broadcast wrong locations,
e.g., a beacon at location P claims its location is P ′ in
the HELLO packet. Also, the compromised common nodes
may maliciously relay location claims pretending to be 1-
hop neighbors of corresponding beacons. For example, node
Na is not a 1-hop neighbor of beacon B, but when it hears
B’s location claim from Nb, it adds B’s location claim into
its HELLO packet. We discuss the effects of such attacks
on the sampling and try to learn the clue to defend against
them:

1) When the sample set Lt−1 in the previous time unit
is correct, as shown in Figure1(a), then the samples
generated in current predication step is also correct
(reflecting real location), and the predicted samples will
intersect with the filter regions1 of beacons which are
not compromised or maliciously relayed (i.e., B1 and
B2). However, the compromised beacon B1′ (mali-
ciously relayed beacon is similar) in Figure1(a) makes
all the samples fail to satisfy filter condition (2).

1. The filter region of a 1-hop beacon is a circle centering at beacon’s
location with radius r, and the filter region of a 2-hop beacon is a ring
centering at beacon’s location with inner radius r and outer radius 2r.

Node
B2

B1'

B1

Current Predicted 
Samples

(a) The current predicted samples
are correct.

Node B2

B1

Current Predicted 
Samples

(b) The current predicted samples
are incorrect.

Figure 1. MCL’s sampling under attacks.

2) When the sample set Lt−1 in the previous time unit
is already incorrect (e.g., the node only heard one
compromised beacon in the t − 1 time unit and is
misled), the samples generated in current predication
step is also incorrect, and as shown in Figure1(b), all
the samples fail to satisfy filter condition (2) too.

From the discussion we can see that in the first case the
effect of compromised beacons (e.g., B1′) should be erased,
and in the second case the effect of incorrect sample set
should be erased. Our second process is exactly to carry
out such “erasion”. It’s a new secure sampling method
which runs when not enough samples are obtained after
running MCL. The whole process is shown in Algorithm 1.
It contains two phases. In the first phase, we still predicate
samples based on the previous sample set Lt−1, and consider
the new samples as valid if it is in the intersection of the
filter regions of i beacons (any i beacons). Then the new
filter condition for sample l becomes

filter(l, i) = ∃Q(Q ⊆ S ∪ T ) ∧ (size(Q) = i) ∧(
∀s(s ∈ S ∧ s ∈ Q → d(l, s) ≤ r)

)
∧(

∀s(s ∈ T ∧ s ∈ Q → r < d(l, s) ≤ 2r)
)

(3)

where size(X) is to compute the cardinality of a set X2.
We try i = size(S∪T )−1 first. If we still cannot obtain
enough valid samples, we will reduce i by one and repeat
such sampling until i reaches 1. If SecMCL still cannot get
enough samples in the first phase, it will enter the second
phase. In the second phase, SecMCL directly draws new
samples from the intersection of filter regions of any i
beacons (i.e., ignore the previous sample set). Similarly, we
try i = size(S∪T )−1 first and repeat until i = 1.

4.3. Analysis
Resolution limit: In [10], a theoretical limit on resolution

is proposed, which is the distance a sensor can move without
changing the connectivity. Following the analysis, if we

2. Inspired by MCB [15], our implementation of filtering also calculates
the plausible sampling region first. However, in our algorithm representing
the plausible sampling region by a single box is not efficient (too large);
we divide the minimum rectangle covering all beacons’ filter regions into
grids and select the grids intersecting with more than i beacons’ filtering
regions as plausible sampling regions.



Algorithm 1 New sampling method in SecMCL.
Input: S, T , N , and Lt−1.

1: n = size(S ∪ T ). //compute the number of beacons.
2: for i = n− 1 to 1 do
3: Predicate samples based on the transition equation (1).
4: Filter the samples using filter condition (3).
5: if number of samples ≥ N then
6: Break.
7: end if
8: end for
9: for i = n− 1 to 1 do

10: Randomly generate samples in the deployment area.
11: Filter the samples using filter condition (3).
12: if number of samples ≥ N then
13: Break.
14: end if
15: end for

use beacons within two hops the resolution limit is πr
12sd

[13], where sd is the seed density (the average number of
seeds/beacons within one hop). In our scenario, we denote
the densities of good and compromised beacons by s′d and s′′d
respectively (s′d > s′′d). Then the resolution limit is also πr

12s′
d

,
since SecMCL filters the impact of compromised beacons in
general cases.

Security analysis: We discuss attacks according to the
attacker model in Section 3. First, the packets injected by
the adversaries cannot pass the authentication. Second, if the
compromised nodes stop communicating during localization,
the impact is limited because small variation of node density
is tolerable when density is enough [13]. Third, when the
compromised beacons broadcast false locations and compro-
mised common nodes maliciously relay location claims, the
secure sampling method of SecMCL can filter them, or in
the worst case, bound the error caused by them. We use ng

and nk to denote the numbers of good and compromised
beacons heard respectively (ng > nk). For the page limit
we only analyze the scenario with a correct previous sample
set. There are two cases: 1) the adversaries trying to mislead
the node to a location not within the filter regions of any
good beacons, and 2) the adversaries trying to mislead the
node to a location within the filter regions of some good
beacons (nc). In the first case, the attack will fail because
SecMCL takes samples from the regions as maximal as
possible covered by the filter regions of beacons, and even
if the compromised beacons collude, the number of filter
regions covering the false location (nk) is less than the
number of filter regions covering the node’s real location
(ng). In the second case, the adversaries utilize partial good
beacons (nc) similar to the pollution attack3 [26]. Then if
the adversaries want to succeed, nc should be greater than
ng −nk +1 (i.e., the false location has ng +1 filter regions
covering it), and they can only mislead a small number of

3. The success of such attack requires: the adversaries know the locations
of the node and good beacons, and the adversaries are colluding.

Table 1. Parameters for simulations

Symbol Default
value

Meaning

vmax 0.4r maximum speed
nd 10 average number of nodes within one hop
sd 2 average number of seeds within one hop
rb 7.8% ratio of compromised beacons to total beacons
rn 0% ratio of compromised common nodes to total

common nodes
dmmax 2r maximum distance between the claimed location

and real location (for compromised beacons)
doi 0 degree of irregularity [11]

nodes that heard the same beacons. Thus, in the worst case
the localization error is still bounded by the intersection of
the filter regions of ng − nk + 1 good beacons.

5. Evaluation

We get the simulator developed by Hu and Evans [13] and
implement SecMCL in it (our code can also be acquired
by email). For all of our experiments, sensor nodes are
randomly distributed in a 500m×500m region. r is set to
50m. We use the modified random waypoint model [13].
The parameters we vary are shown in Table 14. We compare
SecMCL with other three algorithms: MCL [13], Centroid
[8] and Amorphous [10]5. The performance of an algorithm
is judged by the average location estimation error of all the
common nodes. All the results we present here are at least
the average of five independent runs.

Accuracy: Figure 2 shows the estimation error of
different algorithms from time unit 0 to time unit 50.
The ratio of compromised beacons is 7.8% (5 beacons).
Each compromised beacon randomly selects a false location
(0, dmmax] away from its real location to broadcast. We
can see that both SecMCL and MCL are more accurate
than Centroid and Amorphous since they can naturally use
the historical location information. The estimation error of
SecMCL is the lowest (0.5r lower than MCL), because it
filters the effect of the compromised beacons. Also SecMCL
converges faster than MCL due to its filtering ability.

Compromised beacon ratio: Figure 3 shows the estima-
tion error when we vary rb. We can see that when there is no
attack (i.e., rb = 0), SecMCL has the same estimation error
with MCL since the secure sampling process is skipped.
Although the estimation error of all the algorithms increase
with rb, SecMCL outperforms others in the localization ac-
curacy. This figure also indicates that MCL is most affected

4. The default value of sd is set to 2 but not 1 [13] for varying the
number of compromised beacons over a larger range. The default value of
vmax is set to 0.4r but not 0.2r per time unit [13], because MCL has the
best performance at that speed [12], [13].

5. Note that Amorphous [10] has much more communication overhead
than other three algorithms which we do not show in our simulations.
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Figure 2. Accuracy comparison.
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Figure 3. Impact of compromised beacon ratio.

by compromised beacons, because it usually fails to get valid
samples even with one compromised beacon.

Distortion distance: Figure 4(a) shows the impact of
different dmmax. The estimation error of all the algorithms
increases with dmmax, which is very natural. When dmmax

is smaller than 0.5r, MCL and SecMCL have similar es-
timation error because the filter regions of compromised
beacons may still cover the real location and then secure
sampling process of SecMCL is skipped; however, when
dmmax > r the estimation error of MCL increases quickly
because MCL already cannot get any valid sample even with
single compromised beacon then, e.g., in Figure 1(a).

Compromised common node ratio: Figure 4(b) shows
the impact of different rn. Compromised common nodes
will maliciously relay the location claims as mentioned.
However, if the compromised common nodes forward all the
heard location claims, the number of claims forwarded by
each compromised node will be 4sd, 4 times of the number
of claims forwarded by a normal node (sd). Thus here we
limit the number of maliciously relayed location claims to
be sd (i.e., total 2sd claims). We can see that the estimation
error of SecMCL is still less than 0.5r even when rn is
over 50%. We do not simulate Amorphous here because it
does not make sense: compromised nodes can launch more
serious attacks such as reducing the hop count [27].

Speed: Figure 4(c) shows the location estimation error

when we vary the speed of nodes. Both MCL and SecMCL
perform best when vmax = 0.4r per time unit, and then
their performance degrades slightly when vmax increases.
SecMCL also has the lowest location estimation error be-
cause of its filtering ability under attacks.

Seed density: Figure 4(d) shows the location estimation
error of different algorithms when seed density varies. It is
natural that when the seed density increases the estimation
error of all the algorithms decreases. The estimation error of
Amorphous does not have much variation after sd reach 1,
similar to the finding in [13]. SecMCL performs better than
other algorithms when sd is enough (i.e., ≥ 1).

Node density: Figure 4(e) shows the impact of node
density. The estimation error of Amorphous decreases obvi-
ously when node density increases, because the estimation
of one-hop distance becomes more accurate. SecMCL and
Centroid are little affected by node density because they only
need a small number of neighbors to get the information of
beacons. A surprising finding is the estimation error of MCL
increases slightly when node density increases. The reason
may be the false beacon information is distributed to nodes
within two hops more sufficiently then.

Radio irregularity: Figure 4(f) shows the impact of
degree of irregularity (DOI) [11] in different algorithms.
DOI is a method to approximate the irregularity of radio
range, e.g., when DOI is 0.1, then the actual radio range
in each direction is randomly chosen from [0.9r, 1.1r].
Since SecMCL can filter partial irregularity as compromised
beacons, the estimation error of SecMCL is still small when
DOI ≤ 0.3, which is better than MCL and MCB and
the algorithm in [12] (their performance do not degrade
only when DOI ≤ 0.2). Also, MCL performs badly when
DOI ≥ 0.3. The reason is the radio irregularity together
with compromised beacons makes MCL harder to get valid
samples.

6. Conclusion

SMC-based localization is popular in mobile sensor net-
works, however, nearly all the existing SMC-based localiza-
tion algorithms do not consider security issues. To the best
of our knowledge, this is the first work to study secure SMC-
based localization. Our SecMCL method prevents the adver-
saries from injecting false messages by authentication, and
can tolerate compromised nodes by a new sampling method.
Simulation results show that the localization accuracy of
SecMCL is much higher than MCL under attacks. SecMCL
also has two merits compared with some secure localization
algorithms [19]. First, SecMCL does not incur additional
messages, which conserves much energy. Second, when
there is no attack, SecMCL achieves the same localization
accuracy as MCL, which makes it also suitable for networks
currently operating in trusted environment.
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Figure 4. Varying dmmax, rn, vmax,sd, nd and doi in simulation.
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