
SWCA: A Secure Weighted Clustering Algorithm
in Wireless Ad Hoc Networks

Yingpei Zeng†‡ Jiannong Cao‡ Shanqing Guo? Kai Yang† Li Xie†
†State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, P.R. China

‡Department of Computing, Hong Kong Polytechnic University, Hong Kong
?School of Computer Science and Technology, Shandong University, Jinan, P.R. China

zyp@dislab.nju.edu.cn csjcao@comp.polyu.edu.hk guoshanqing@sdu.edu.cn yang kai@live.com xieli@nju.edu.cn

Abstract—Clustering has been widely used in wireless ad hoc
networks for various purposes such as routing, broadcasting and
Qos. Many clustering algorithms have been proposed. However,
most of them implicitly assume that nodes behave honestly in the
clustering process. In practice, there might be some malicious
nodes trying to manipulate the clustering process to make them
serve as clusterheads, which can obtain some special power, e.g.,
eavesdropping more messages.

In this paper we present a Secure Weighted Clustering Algo-
rithm (SWCA). SWCA uses the Weighted Clustering Algorithm
(WCA) for clustering and TELSA for efficiently authenticating
packets. We propose a novel neighbor verification scheme to
check whether the values of election-related features (e.g., node
degree) are forged by malicious nodes. Also, we theoretically
analyze the probability for a malicious node to tamper node
degree without being detected and derive a lower bound on the
probability. Finally, simulation results show that SWCA is secure
but still has comparable performance with WCA. To the best
of our knowledge, SWCA is the first algorithm considering the
security of 1-hop type clustering (in this type only the clusterhead
can communicate with ordinary members directly) in ad hoc
networks.

I. INTRODUCTION

Clustering is an important technique in ad hoc networks.
Originally used to address dynamic topology and transmission
conflicts when it was first proposed by Baker et al. [1],
clustering now has extended its application into many fields
such as routing [2], [3], broadcasting [4], QoS [5], services
discovery [6] and security [7], [8], etc. Dozens of clustering
algorithms have been proposed in the past more than twenty
years [2], [3], [5], [9]–[14].

One problem in previous clustering algorithms is that almost
all of them lack security considerations, which may result in
severe security consequences. For example, in DCA [12] a
malicious node can become a clusterhead by simply broad-
casting a “CH” (clusterhead) message. Consequently, if DCA
is used to elect clusterheads in a cluster-based routing protocol,
a malicious node can easily eavesdrop all the messages routed
through it (more messages than simply changing its wireless
card into promiscuous model). The cases will be even worse
when clustering is used in security mechanisms. For example,
attackers will know the keys of all the nodes if there are
enough attackers becoming clusterheads [8].

Currently several secure clustering algorithms have been
proposed [7], [15]–[17]; however they either focus on spe-
cial cluster type (i.e., clique), or are not applicable in ad

hoc networks. In this paper, we propose a secure clustering
algorithm called SWCA, which is based on WCA [9]. SWCA
uses an efficient symmetric cryptography protocol TESLA
[18] to authenticate messages. In order to prevent malicious
nodes from increasing their election priorities, the values of all
the election-related features are verified by a novel neighbor
verification scheme. Also, we theoretically derive a lower
bound on the probability for a malicious node to tamper
node degree without being detected. Finally we evaluate the
performance of SWCA by simulation.

The rest of the paper is organized as follows. In Section
II we review related work. In Section III, we describe the
attacker model and assumptions. In Section IV, we present the
design of SWCA. Section V and Section VI give theoretical
analysis and simulation results of SWCA respectively. Finally
we conclude this paper in Section VII.

II. RELATED WORK

Currently, many clustering algorithms have been proposed
in the literature. We can roughly classify them into three types
based on the radiuses of clusters they produce: (i) clique
[3], [7], in which cluster members can communicate with
each other directly, (ii) 1-hop [2], [5], [9], [11], [12], in
which only the clusterhead can communicate with ordinary
members (citizen nodes) directly, (iii) k-hop (k ≥ 1 and k is
adjustable) [13], [14], in which the clusterhead is within k
hop to its ordinary members. Among them the 1-hop type
may be the most natural and also the most widely used
one. 1-hop type cluster can be transferred to another kind
of backbone called Connected Dominating Set (CDS) with
addition steps, which is shown with concrete example in a
recent work [19]. Our algorithm is based on WCA [9], which
is a 1-hop type algorithm and is weight based. Weight based
means clusterhead is selected based on the weight of node
(weight may be computed from any feature alone or several
features combined). Comparing with other single-feature based
(e.g., nodeId or degree based algorithms [2]), weight based
clustering algorithms (e.g., WCA [9], DCA [12]) are believed
to be more flexible [9].

There are several research papers on the security of clus-
tering. In [15], Vasudevan et al. proposed two secure leader
election algorithms, but both of them require nodes to honestly
perform priority evaluation function. In [7], Huang et al.

proposed a clusterhead computation protocol to ensure fair
election in cliques. Our algorithms is different from theirs
because we don’t emphasize on the fairness; we consider the
natural difference among electors (such as the node degree).
Sun et al. also proposed a secure distributed clique formation
protocol in [16]. It can make normal nodes form mutually
disjoint cliques when there are attackers, and the view of
cliques is consistent to all normal members. Another related
work targeting sensor networks is presented by Liu et al. [17],
in which three techniques are proposed for resilient cluster
formation. However these techniques cannot be applied di-
rectly to ad hoc networks, because they need a central control,
e.g., tagging partial nodes as pre-determined clusterheads and
routing packets to the base station.

III. ATTACKER MODEL AND ASSUMPTIONS

A. Attacker Model

An attacker may alter the contents of packets, or inject
fabricated packets into the network. Because in ad hoc net-
works, packets may pass through multi-hop before arriving
target node, attackers in the middle of the route may change
the values of critical fields to manipulate the election. Also,
a malicious node may masquerade as another node to send
fabricated packets.

An attacker may fabricate the values of election-related
features to increase its election priority. An example is the
fabrication of the node degree: an attacker forges neighbors
which don’t really exist to increase its priority. The attacker
can success because in clustering algorithms, node degree is
usually an important feature [2], [9], and each node usually
computes node degree and other factors by itself [2], [9], [12],
then the attacker can easily forge a neighbor to increase its
node degree, resulting a more favorable combined weight and
higher election priority.

There may be single-node attacks and collusion attacks
in the network. In the former case, nodes carry out attacks
independently. In the later case, information may be exchanged
between colluding attackers, so they are able to claim fabri-
cated but consistent-alike election-related information.

B. Assumptions

We assume that nodes are equipped with omnidirectional
antennas. Also we assume R and r are the maximal and
minimal transmission ranges in the network respectively; one
node can hear another node if they are within distance r and
cannot hear another node if they are outside distance R. This
is a reasonable assumption because in [20], Guha et al. found
their radios r:R=121cm:183cm≈0.66 in most cases through
experiments. In Section VI-B we turn to the quasi unit disk
graph model (Quasi-UDG) [21] in simulation.

We also assume that each node has been assigned a unique
identity with corresponding public/private key pairs, which can
be completed by many proposed methods (e.g., [22], [23]).
All nodes can move randomly in the network; we assume
that nodes in the network have an approach to know their

locations (e.g., using GPS) and a location verification scheme
is employed, such as [24], [25].

In order to use TESLA, we inherit all the assumptions of
TESLA [18]. For example, all nodes have loosely synchro-
nized clocks (maximal error synchronization is ∆), and each
node in the network should be aware of the time interval of
TESLA. TESLA is also used in other protocols of ad hoc
networks, e.g., [26].

IV. SECURE WEIGHTED CLUSTERING ALGORITHM
(SWCA)

A. Overview

If we can prevent attackers from altering the contents
of clustering related packets, and constrain all the nodes
to send their election-related information honestly, then the
result of clustering will be correct. This is also the way
SWCA follows. Specifically, SWCA uses efficient symmetric
cryptography TESLA [18] to prevent attackers from modifying
packets, and uses neighbor verification to make sure that the
values of election-related features are correct. These election-
related features include node degree, distances with neighbors,
speed (which is representing the mobility of a node [9]) and
cumulative clusterhead time (which is representing the inverse
of the battery power of a node [9]).

B. SWCA Cluster Formation

In SWCA, Nodes periodically broadcast hello packets to
neighbors. Hello packets contain nodeIds and locations of
nodes and employ TESLA to authenticate the sources. Lo-
cation can be acquired from equipped GPS or localization
algorithms [24].

Before clustering, nodes need to verify neighbors’ locations.
According to our assumption, the verification is carried out by
a location verification scheme e.g., VM [25]. If a node want
to be a candidate for clusterhead, its location must have been
verified. The correctness of nodes’ locations is important; it is
used in the verification of distances with neighbors.

Step 1: When the clustering starts, each node broadcasts its
election-related information in a packet to neighbors within
2 hops (we call them within-2-hop neighbors). The packet
(we call it info packet) contains information used to compute
the combined weight, and these information will be verified
later by neighbors. Format of this packet 1 is shown in Fig.1.
The pktId is an identifier that has not been used recently in
transmission. The location is the verified location of node. The
neighborList is a list of neighbor information; each entry of
the list includes nodeId and location of a neighbor. speed and
CCHtime are the speed and cumulative clusterhead time of the
node, respectively. Info packet only propagates 2 hops, which
can be realized by setting the TTL (time-to-live) value of IP
packet to 2.

1The whole packet is usually in 〈Mj , i, Ki−d, MAC(K′
i, Mj)〉 form.

where Mj is the payload, the rest parts compose a TESLA block: i is the
current TESLA time interval, d is the chosen key disclosure delay, the key
Ki−d is the disclosed key to be used to authenticate foregoing packets, and
K′

i is derived from the current key. MAC is message authenticating code.

Node: Minfo =(INFOPKT, pktId, nodeId, location, neighborList, speed, CCHtime)
Node→ info packet=〈Minfo, tesla〉 to 2 hops

Node: Mweight =(WEIGHTPKT, pktId, Wv, neighborIdList)
Wv = w1∆v + w2Dv + w3Mv + w4Pv

Node→ weight packet=〈Mweight, tesla〉 to whole network

Node: Mauthen =(AUTHPKT, pktId)
Node→ (optional) authen packet=〈Mauthen, tesla〉 to whole network

Fig. 1. Packets Propagation in SWCA

A

B

D

C

G

E

F

H

I
r

Fig. 2. Verification of neighbors’ node degrees.

Step 2: Nodes calculate their combined weights, and broad-
cast weights to the whole network through weight packets.
This step is similar with WCA [9]. As shown in Fig.1, the
∆v, Dv,Mv, Pv are the corresponding weights of the four
features mentioned before (we assume that the value of a
node of ∆v, Dv,Mv, Pv will be smaller if it has corresponding
more node degree, less distances with neighbors, less speed
and less cumulative clusterhead time). The w1, w2, w3 and
w4 are corresponding weighing factors. The neighborIdList
is a list of neighbors’ nodeIds, which is used to gain the
topology to compute global minima [9]. The broadcast can
be done by broadcasting a single packet to network, or by
exchanging weight information with neighbors as in [9]. In
our simulation we use the first method. Weight packets can be
sent immediately after info packet, and the TESLA key used
to authenticate its info packet may also be used to generate
MAC for this packet.

Step 3: When the key disclosure time arrives, each node
broadcasts a key to authenticate the key used in the last
interval. This key is needed by other nodes to verify its
previous packets (i.e., info packet, weight packet); if key Ki

was used to authenticate the last sent packet, we have to send
a disclosure key Kx which is successive or equal to key Ki

(x ≥ i) in the key chain. We call the packet containing the key
authen packet. However, if the TESLA key chain is shared by
other applications of the same node, then this packet may be
canceled if another application has broadcasted packets in this
time interval.

Step 4: Nodes verify their neighbors’ election-related infor-
mation and their combined weights. Since nodes have received
and authenticated the info packets and weight packets of
neighbors within 2 hops, now they will verify the values of
the four features and the combined weights of their neighbors.
If a node find some misbehaving node, it will report that node
to others by broadcasting the error to network. The processing
of error reports will be described in Section IV-C. Next we
will discuss how to verify node degree and other features.

Algorithm 1 Verification of neighbors’ node degrees.
Input: locations and neighborLists of within-2-hop neighbors and

itself.
1: Vset←1-hop neighbor nodes, itself
2: for all each 1-hop neighbor node Ni do
3: if itself not in Ni

′s neighborList then
4: report error, continue
5: for all each Ni

′s neighbor node Nij do
6: if Ni is not in Nij

′s neighborList then
7: report error, continue
8: ND=dist(Ni, Nij)
9: if ND > R then

10: report error, continue
11: if Nij /∈ Vset then
12: NS=dist(Nij , self)
13: if NS < r then
14: report error, continue
15: add Nij to Vset

16: for all each 2-hop neighbor node Ni do
17: for all each Ni

′s neighbor node Nij do
18: if Nij /∈ V set then
19: NS=dist(Nij , self)
20: if NS < r then
21: report error, continue
22: add Nij to Vset

(i) verification of node degree. This procedure is shown
in Algorithm 1. The Vset represents nodes that have been
verified as non-fabricated nodes (fabricated node means node
not really existing). The function dist(A, B) computes the
Euclidean distance between any node pair A and B. Each
node only verifies neighbors within 2 hops: (1) when verifying
a 1-hop neighbor node Ni, first, node checks the existence of
itself in node Ni’s neighborList. Then it checks whether node
Nij also claims node Ni as its neighbor if node Ni claims
Nij as a neighbor. At last, node will try to detect whether
node Nij is fabricated or is colluding with node Ni through
this fact: if a node is within r distance to the checking node,
then follow our assumption, it should be the checking node’s
neighbor. Take node F in Fig.2 for example, it will verify node
G and E. When verifying node G, it checks whether node G’s
neighborList contains node F itself, then it checks whether
node G’s neighbors F and H also claim G as their neighbor,
at last it checks whether node F and H are not fabricated.
Node E is verified in the similar way. (2) when verifying a
2-hop neighbor node Ni, we only need to verify that all Ni’s
neighbors are not fabricated. This verification doesn’t add any
communication overload (because sending information to the
2-hop neighbors is already needed in (1)) but increases the
detection ability. For example, as shown in Fig.2, node G is
a 2-hop neighbor of node A, and node A fabricates a node
D and “places” it at a location nearby. Then we can see that
only node G can detect the fabrication of D, because node G
is supposed to have node D as its neighbor for D is less than
r distance to it.

(ii) verification of distances with neighbors, speed, cu-
mulative clusterhead time and combined weight. Here nodes
only verify these values of 1-hop neighbors. We will discuss

the verification method of different items one by one. (1)
all nodes’ degrees have been verified in (i) and we assume
that each node’s location has been verified before clustering.
So we can first check whether the locations of neighbor
nodes equal with their locations in the neighborList fields of
received packets, then we calculate and verify the distances
with neighbors of 1-hop neighbor nodes. (2) the speed of a
node can be verified by using its location in the former cluster
election round and its current location. (3) in SWCA each
node knows the elected clusterheads, they certainly can verify
the cumulative clusterhead times of neighbors. (4) since all
the four weights corresponding to four system parameters are
known and verified, each node can calculate the combined
weights of neighbors now, and then checks whether these
values are equal with the values in the weight packets of
neighbors.

Step 5: Now that the combined weights of all nodes
are known and verified, nodes can compute the clusterheads
distributedly as in WCA [9], which is an iterative process: (1)
choose the current minimum weight node as clusterhead, (2)
assign the head’s unassigned neighbors as the head’s citizen
nodes, (3) mark the clusterhead and its citizens as assigned,
and repeat (1) until no unassigned node existing.

C. Dealing With Error Reports

In order to avoid defamation by malicious nodes, only
acceptable reports are processed in SWCA. Specifically, we
limit the number of report a node can send by a threshold δ,
e.g., δ = 1. Then a report is acceptable if and only if the
reporting node hasn’t reported before (i.e., repNum<δ) and
the reported node hasn’t not been precluded. This strategy can
efficiently limit defamation by malicious nodes. For example,
when node A discovers misbehavior of a node B during the
verification, it will broadcast an error report to the network.
Node B may also send an error report to defame node A.
Then with our strategy, the worst case is that both a normal
(well-behaved) node and a malicious node are precluded from
being elected as head. We will show in Section V that the loss
of small number normal nodes doesn’t have much effect on
detection ratio of node fabrication, given that the density of
normal nodes is enough.

V. ANALYSIS

In this section, we discuss the security properties of SWCA.
From Step 4 (ii) of Section IV-B, we can see that the correct-
ness of cumulative clusterhead time can be easily achieved
because each node knows all the clusterheads in each round
(computed in Step 5), also the speed can be easily verified
when the locations of neighbor node in the former round
and in current round are known. However, the correctness of
distances with neighbors depends on the truth of node degree.
Because if there is any fabricated node, the values of distances
to neighbors can be easily changed. Also node degree itself
is an importance election-related feature. So it’s critical to
ensure that the values of node degrees are correct. Next we
will consider how SWCA resists to node degrees tampering

(i.e., adding fabricated node). We consider the problem in 2-
Dimensions here and start the analysis with a definition.

Definition 1: The possible coverage area of a node is the
circular area around node with radius=R, and the secure
coverage area of node is the circular area around node with
radius=r. R and r are the maximal and minimal transmission
ranges of node respectively.

SWCA has the desirable property as shown in Theorem 1
below:

Theorem 1: If each node’s possible coverage area is cov-
ered by within-2-hop normal neighbor nodes’ secure coverage
areas, that’s to say all locations of its possible coverage area
are in at least one within-2-hop normal neighbor node’s secure
coverage area, then no fabricated node can exist without being
detected.

Proof: We prove it by contradiction. Suppose that a
malicious node fabricates a node F , and claims it at a location
successfully without being detected, in the secure coverage
area of a normal neighbor node B. B is within 2 hops to the
malicious node. Then according to our assumption, node B
and node F should be neighbors, so if node F really exists,
node B and F will be in each other’s neighbor list during
verifying node’s degree in Step 4. But in fact, F is faked and
doesn’t lie there, so B will fail to find such a neighbor. Then
because B is a normal node, it will detect and report the error.
So there is a contradiction.

If the premise of Theorem 1 holds, then node degree
tampering will be thwarted absolutely. However, the theorem
only gives the ideal case; when we assume the fabricated
node is uniformly distributed, the real detection ratio (i.e.,
number of detected fabricated nodes

number of total fabricated nodes) of node fabrication is equal to
the coverage ratio of its possible coverage area by within-2-
hop normal neighbors’ secure coverage areas. So we will give
a lower bound of the coverage ratio in the next subsection.

A. A Lower Bound of The Coverage Ratio

As stated previously, the detection ratio of node fabrication
depends on the coverage ratio of node; we will compute a
lower bound of the coverage ratio (Pcov) in this subsection.
We assume that there are N nodes deployed in an area of S.
Then the node density (nodes per unit area) D = N

S . Given
a region of area Sa, the probability of i nodes lying in it is
Poisson distributed, i.e.,

pi =
(SaD)ie−SaD

i!
(i = 0, 1, 2, . . .) (1)

The probability for a node A to be covered by at least one
within-2-hop neighbor is the complement of the probability
for no neighbor to cover the node A, so,

Pcov = 1− Pncov (2)

and

Pncov =

∫∫
Σ

p(s) ds

Area of Σ
(3)

where Σ is the circle of radius R and p(s) is the probability
for no within-2-hop neighbor of node A to cover the small
differential s area. Next we will compute the Pncov .

A

2r

r

r

x
d1

d2

(a) Computing lower bound by
integral on x.

30 60 90 120 150
0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 c
ov

er
ag

e
ra

tio

Total node

 90:250=0.36
 120:250=0.48
 150:250=0.6
 180:250=0.72
 210:250=0.84

(b) The lower bound of dif-
ferent r : R ratios.

Fig. 3. Lower bound illustration.

We assume that a node is a within-2-hop neighbor of the
node A only when it is within 2r distance to node A, to get
a lower bound. We classify the calculation into two different
cases for a easy integral, as shown in 3(a):

(i)when R ≥ r and R < 3r, the integral interval on x is
from 0 to R, which can be separated to one part of “the whole
r-radius small circle” and another part of “the intersection of
two circles”:

Pncov =

∫ r

0
2πxe−πr2Ddx +

∫ R

r
2πxe−S(x)Ddx

πR2
(4)

=
r2e−πr2D +

∫ R

r
2xe−S(x)Ddx

R2
(5)

where S(x) is the area of the intersection region of two circles,
which can be computed by geometric property. There are two
conditions:
• when x ≥

√
(4r2 − r2) =

√
3r, S(x) =

4r2 arccos d1
(2r) − d1

√
4r2 − d1

2 + r2 arccos d2
r −

d2

√
r2 − d2

2, where d1 = x2+3r2

2x , d2 = x2−3r2

2x ,
• when x <

√
(4r2 − r2) =

√
3r, S(x) =

(2r)2 arccos d1
(2r) −d1

√
4r2 − d1

2 + r2(π−arccos d2
r)+

d2

√
r2 − d2

2,where d1 = x2+3r2

2x , d2 = 3r2−x2

2x .
(ii)when R ≥ 3r, the calculation is the same with above.

But the second integral will be only to 3r, because if a location
is beyond 3r, no within-2-hop neighbor will cover it.

Pncov =
r2e−πr2D +

∫ 3r

r
2xe−S(x)Ddx

R2
(6)

Now, following equation (2), (5), and (6), we are able to
compute a lower bound of Pcov. We demonstrate the values
of different input parameters to give an intuitive impression.
We deploy various number of nodes randomly in an area of
1000m×1000m and different r : R ratios are used. The results
are shown in Fig.3(b). We can see that when r : R = 150m :
250m = 0.6, the coverage ratio is more than 90% with only
50 total node number. Also a greater r : R ratio can gain
higher detection ability.

B. Security Analysis
For the page limitation we selectively list some attacks and

briefly discuss how SWCA resists these attacks, according to
our attacker model.

Attacker may alter the packet contents or masquerade an-
other node to send packets. For example, attacker changes the
others packet fields corresponding to the values of election-
related features to decrease their election priority. In SWCA,
the usage of TESLA prevents such attacks: receiver accepts a
packet only if it satisfies TESLA constraints [18].

Node may fabricate neighbor nodes and add them to its
neighbor list to increase its degree, thus it gains a higher
election priority. SWCA is resilient to such attack. According
to the Theorem 1, it will be impossible to fabricate nodes
without being detected, provided that the possible coverage
area of attacker is covered by its normal within-2-hop neigh-
bor nodes. We showed by analysis that not many nodes are
needed in reality in Section V-A, also we will show that by
simulations in Section VI-B. Additionally, it’s easy to see that
the reduction of node degree can be detected by neighbors.

Nodes may collude to increase their node degrees. For
example, node A and node B are not neighborhood, but
they may construct info packets claiming each other in their
neighbor lists and tunnel packets to each other. However these
attacks will fail because such attacks have the same effect
of node A (so does B) creating a fabricated node in its
neighborhood, which will be detected by normal neighbors.

VI. SIMULATION EVALUATION

A. SWCA Performance Evaluation

2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

 c
lu

st
er

in
g

de
la

y
 (s

)

The max speed of
nodes (m/s)

 WCA
 SWCA

20 30 40 50 60 70
0

2

4

6

8

A
ve

ra
ge

 c
lu

st
er

 s
iz

e

Total node number
20 30 40 50 60 70
0

30

60

90

120

150

N
um

be
r

of
 m

es
sa

ge
s

se
nt

 p
er

 n
od

e
Total node number

Fig. 4. Simulation Results of SWCA Performance.

We implement SWCA in GloMoSim to evaluate its perfor-
mance. The TESLA parameters we use in SWCA are: interval
I=0.6(s), maximal synchronization error ∆ = 0.1(s), delay
d = 2. We make a comparison to the implementation of WCA
by Jorge Nuevo [6]. In all the simulations nodes are randomly
placed within a 1000×1000m2 area, and transmission range is
250m, using IEEE 802.11 as MAC protocol, AODV as routing
protocol, and Random Waypoint as mobility model.

Three performance metrics are considered here: clustering
delay, cluster size and the number of messages sent per node in
each clustering process. The result of clustering delay is shown
in Fig.4(a), which indicates that the average delay of SWCA
is a little longer but close to WCA. The average cluster sizes
of both algorithms is shown in Fig.4(b), we can see that the
cluster size of SWCA is similar to WCA, since they follow the
same weight parameters. The number of packets sent to MAC
layer is captured as the number of messages sent per node.

The result is shown in Fig.4(c). We can see that the number
of messages sent by SWCA is more than WCA, because we
need more authenticated information on topology. However
we believe the overload is tolerable and can be amortized
since the authenticated information can also be used by other
applications like routing.

B. Detection of Node Degree Tamping Evaluation

50 100 150
0

3

6

9

12

15

18

A
ve

ra
ge

 n
ei

gh
bo

r n
um

be
r

Total node number
50 100 150

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
ov

er
ag

e
ta

ti
o

Total node number

 Coverage ratio
 Lower bound

40 80 120
0.80

0.85

0.90

0.95

1.00

D
et

ec
ti

o
n

ra
ti

o

Normal node number

 Number of Fabricated Nodes=10
 Number of Fabricated Nodes=15
 Number of Fabricated Nodes=20
 Number of Fabricated Nodes=25

Fig. 5. Simulation Results of the Detection of Node Degree Tamping.

We evaluate the detection ability of node degree tamping
here to confirm the analysis in Section V-A. Quasi unit disk
graph model (Quasi-UDG) [21] is used here; it is more realistic
than unit disk graph model [21]. In this model, there are two
parameters: the transmission range R, and a additional factor
α. Then there is a link between a node pair when the distance
of them d < αR, no link if d > R; when d is within [αR, R],
we assume presence of a link with probability R−d

R−αR . In
our simulation, nodes are randomly placed within a 1000m×
1000m area, R = 250m and α = 0.6 (i.e., r = 150m).

Fig.5(a) shows the average neighbor node number under this
model. In Fig.5(b), we show the average coverage ratio (i.e.,
Pcov) of simulation, and the corresponding theoretical lower
bound values computed following the analysis in Section V-A.
The figure indicates that, with 40 and 50 nodes, the coverage
ratios exceed 90% and 95% respectively. We give another
simulation on detection ratio: we randomly choose some nodes
as attackers, and each selected node will fabricate a node and
randomly place it in its possible coverage area. Fig.5(c) shows
the detection ratios with different number of attackers. We can
see that the detection ratio is more than 95% in all the cases
when there are 60 normal nodes.

VII. CONCLUSION

In this paper we present the design and evaluation of
SWCA, a secure clustering algorithm based on WCA. SWCA
uses TESLA to authenticate the communication, and a novel
neighbor verification scheme to verify the values of election-
related features (this scheme only concerns nodes within 2
hops). Our analysis and simulation results show that SWCA
is resilient to attacks but still has comparable clustering
performance to WCA. To the best of our knowledge, SWCA is

the first algorithm in ad hoc networks considering the security
of 1-hop clustering.

ACKNOWLEDGMENT

The authors are grateful to Zhuo Li, Lei Xie, Shigeng
Zhang, and Daqiang Zhang for their comments, which helped
improve the quality of this paper. This work is supported in
part by Hong Kong Research Grant Council under CERG
grant PolyU 5102/07E, the Hong Kong Polytechnic University
under the ICRG grant G-YF61, China 973 Project under Grant
No. 2006CB303000, and the Natural Science Foundation of
Jiangsu Province under Grant No.BK2007136.

REFERENCES

[1] D. Baker and A. Ephremides, “The architectural organization of a mobile radio
network via a distributed algorithm,” IEEE Trans. on Communications, vol. COM-
29, no. 11, pp. 1694–1701, 1981.

[2] M. Gerla and J. T.-C. Tsai, “Multicluster, mobile, multimedia radio network,” ACM
Journal on Wireless Networks, vol. 1, no. 3, pp. 255–265, 1995.

[3] P. Krishna, N. Vaidya, M. Chatterjee, and D. Pradhan, “A cluster-based approach
for routing in dynamic networks,” ACM CCR, vol. 27, no. 2, pp. 49–65, Apr. 1997.

[4] Y. chee Tseng, S. yao Ni, Y. shyan Chen, and J. ping Sheu, “The broadcast storm
problem in a mobile ad hoc network,” Wireless Networks, vol. 8, pp. 153–167,
2002.

[5] C.R.Lin and M. Gerla, “Adaptive clustering for mobile wireless networks,” IEEE
JSAC, vol. 15, no. 7, pp. 1265–1275, Sept. 1997.

[6] J. Nuevo and J.-C. Grégoire., “A hierarchical service distribution architecture for
ad hoc networks based on the weighted clustering algorithm,” in Proceedings of
the 5th European Wireless Conference (EW 2004), Barcelona, Spain, 2004.

[7] Y. Huang and W. Lee, “A cooperative intrusion detection system for ad hoc
networks,” in Proceedings of SASN, Fairfax VA, October 2003.

[8] M.Bechler, HJ.Hof, D.Kraft, F.Paehlke, and L.Wolf, “A cluster-based security
architecture for ad hoc networks,” in Proceedings of INFOCOM, Hong Kong,
China, March 2004.

[9] M. Chatterjee, S. Das, and D. Turgut, “WCA: A weighted clustering algorithm
for mobile ad hoc networks,” Journal of Cluster Computing, vol. 5, no. 2, pp.
193–204, 2002.

[10] A. B. McDonald and T. Znati, “A mobility-based framework for adaptive clustering
in wireless ad-hoc networks,” IEEE JSAC, vol. 17, no. 8, August 1999.

[11] L. Ramachandran, M. Kapoor, A. Sarkar, and A. Aggarwal, “Clustering algorithms
for wireless ad hoc networks,” in Proceedings of DIAL-M, 2000, pp. 54–63.

[12] S. Basagni, “Distributed clustering for ad hoc networks,” in Proceedings of I-SPAN,
Jun. 1999, pp. 310–315.

[13] A. Amis, R. Prakash, T. Vuong, and D. Huynh, “Max-min d-cluster formation in
wireless ad hoc networks,” in Proceedings of INFOCOM, March 2000.

[14] F. G. Nocetti, J. Solano-González, and I. Stojmenovic, “Connectivity based k-hop
clustering in wireless networks,” Telecommunication Systems, vol. 22, pp. 105–
220, 2003.

[15] S. Vasudevan, B. DeCleene, N. Immerman, J. Kurose, and D. Towsley, “Leader
election algorithms for wireless ad hoc networks,” in Proceedings of DISCEX III,
April 2003.

[16] K. Sun, P. Peng, and P. Ning, “Secure distributed cluster formation in wireless
sensor networks,” in Proceedings of ACSAC, 2006.

[17] D. Liu, “Resilient cluster formation for sensor networks,” in Proceedings of
ICDCS, 2007.

[18] A. Perrig, R. Canetti, D. Tygar, and D. Song, “Efficient authentication and signature
of multicast streams over lossy channels,” in Proceedings of IEEE S&P, May 2000,
pp. 56–73.

[19] S. Basagni, M. Mastrogiovanni, A. Panconesi, and C. Petrioli, “Localized protocols
for ad hoc clustering and backbone formation: A performance comparison,” IEEE
TPDS, vol. 17, no. 4, pp. 292–306, 2006.

[20] S. Guha, R. N. Murty, and E. G. Sirer, “Sextant: A unified node and event
localization framework using nonconvex constraints,” in Proceedings of MobiHoc,
2005.

[21] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Adhoc networks beyond unit disk
graphs,” in Proceedings of DIAL M-POMC, 2003.

[22] L. Zhou and Z. J. Haas, “Securing ad hoc networks,” IEEE Network Magazine,
vol. 13, no. 6, pp. 24–30, 1999.

[23] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, “Providing robust and ubiquitous
security support for mobile ad-hoc networks,” in Proceedings of ICNP, 2001.

[24] L. Lazos and R. Poovendran, “SeRLoc: Secure range-independent localization for
wireless sensor networks,” in Proceedings of ACM WiSe, 2004.

[25] S. Čapkun and J. P. Hubaux, “Secure positioning in wireless networks,” IEEE
JSAC, 2006.

[26] Y. Hu, A. Perrig, and D. Johnson, “Ariadne: A secure on- demand routing protocol
for ad hoc networks,” in Proceedings of MobiCom, 2002.

