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Abstract

Many sensor network applications rely on sensors’ location

information. However, most of existing location algorithms as-

sume a non-adversarial environment or assume beacons lying

within 1-hop. In this paper, we focus on Hop-Count based lo-

calization (multihop) and develop a Secure HOp-Count based

LOCalization scheme, called SHOLOC, to make localization

attack-resistant. In SHOLOC, we assume both ordinary nodes

and beacon nodes can be moving, and the whole network pe-

riodically restarts localization. SHOLOC proposes a protocol

to authenticate beacon information and protect hop-count from

being arbitrary changed. SHOLOC employs beacon nodes to

detect wormhole attacks. Theoretical analysis and simulation

results are presented. Our conclusion also includes two inter-

est findings: 1)hop-count increment attacks are not effective to

Hop-Count based algorithms, 2)filter mechanisms such as least

median squares (LMS) are not resistant to wormhole attacks,

and our method of detecting at beacon nodes side works well.

1. Introduction

Determining the location of sensors reliably is an impor-

tant issue in wireless sensor networks (WSN). On one side,

many applications of WSN require knowing location of sen-

sors. e.g., collected data need to be bound with location, and

location information also can be used to facilitate network func-

tions such as routing. Also there are many security mecha-

nisms employing sensors’ location recently, e.g., key distribu-

tion [9]. On the other side, when sensor networks are deployed

in real world, the environments may be untrustworthy, and even

may be hostile with presence of malicious adversaries, e.g., in

the battlefield-related applications[1]. Secure localization algo-

rithms are needed to survive in such environments.

Several secure localization algorithms have been proposed.

Capkun and Hubaux [2] proposed SPINE for verifying dis-

tances between nodes in sensor network positioning. Li et al.

[8] proposed to use robust statistical methods to reduce the ef-

fect of bad location references. Liu et al. [10] proposed Attack-
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Figure 1. Damage of a single malicious node. Red

nodes represent beacons, black node is the malicious node, and

lines represent the estimation error. The simulation is done in

100×100m
2 area, total 300 nodes and 30 (10%) are beacons,

radio range is 15m, beacon packets propagation is limited to 6

hops.

Resistant MMSE to filter bad location references too. However,

to the best of our knowledge, all the existing secure localization

proposals didn’t consider the multihop property. Both [8] and

[10] only consider the last location-calculation step, they can’t

be applied to multihop localization algorithms directly.

Here, we focus on the security of Hop-Count based mul-

tihop localization algorithms [12][15][11], for their simplicity

and efficiency. Hop-Count based localization algorithms usu-

ally have little assumption about the ability of sensor node, and

usually can determine sensor location with location error about

30% of the radio range, which is sufficient for applications like

position-based routing. If more information such as distance

level is available, location error can be further reduced to 10%

of radio range [11] [15]. However, this class of localization al-

gorithm is vulnerable to attacks. In Figure 1(b), there is only a

single malicious node, which reduces the hop count of pass-by

packets by 3, we can see that the location estimation of nearby

nodes are severely distorted.

In this paper, we present a Secure HOp-Count based LO-

Calization scheme (SHOLOC), which is resistant to different



attacks, e.g., hop-count reduction attack and forging packets.

A protocol combining modified TESLA [13] and hash mech-

anism is proposed to authenticate beacon location information

and protect hop-count information. In order to detect wormhole

attacks, we propose a method which employing beacon nodes

to check the distance-impossibility between them. Finally, we

use least median squares (LMS) to cope with minor bad loca-

tion references. Theoretical analysis and simulation results are

also presented.

The rest of the paper is organized as follows. The next sec-

tion summarizes similar efforts in current research, Section 3

describes network model and attacker model. In Section 4

we present the SHOLOC scheme and we give analysis in the

Section 5, We give simulation results in Section 6. Section 7

presents our conclusion.

2. Related Work

2.1. Hop-Count based Localization in Ad Hoc and

Sensor Networks

Many different localization algorithms have been proposed

[16][12][15][11] [17]. Hop-Count based localization algo-

rithms [12][15][11] are a type of simple but efficient algo-

rithms. Niculescu and Nath first proposed DV-Hop in [12].

Savarese and Rabaey [15] proposed Hop-TERRAIN which

contains a refinement process. Nagpal et al.[11] proposed a

similar coordinate system and showed more theoretical results.

In [17], Wang and Xiao aimed to adapt Hop-Count localization

to concave areas.

Hop-Count based localization algorithms usually work as

follows. First, each beacon propagates a packet containing

its location and a hop-count field, each neighbor node who

doesn’t hear that packet before will increase the hop-count

field by one, and then forwards it to neighbors, if the packet

hasn’t reached propagation hop-limit. After that, beacons cal-

culate the corrections (average length of one hop)using other

beacons’ locations and hop counts between them, and propa-

gate corrections to the network again. At last, each ordinary

node has several (need at least 3 when is in 2D) beacons’ lo-

cations and corresponding distances to them < loc, dist >,

which are usually called location references, where dist =
hopcount ∗ mean(corrections). Node can then calculate its

location using minimum mean square estimate (MMSE)[16] or

other mechanisms like bounding-box.

2.2. Secure Localization Algorithms

Recently, secure localization is gaining more and more at-

tention. In [7], Lazos and Poovendran proposed a range-

independent localization algorithm called SeRLoc, in which

there are locators equipped with sectored antennas, and sen-

sors determine their location by calculating the center of the

intersection of heard sectors. Capkun and Hubaux [2] proposed

SPINE for sensor network secure positioning. They use dis-

tance bounding to verify distances between nodes, and use a

proposed mechanism called Verifiable Multilateration (VM) to

restrict the possible location of nodes. Both SeRLoc and SPINE

need to equip special hardware. Li et al. [8] proposed to use

robust statistical methods, i.e., least median of squares (LMS)

instead of least squares (LS, or alias MMSE), to reduce the ef-

fect of bad location references. Liu et al. [10] did similar thing

with [8], they proposed Attack-Resistant MMSE which limits

the mean square error to filter bad location references. Both [8]

and [10] only consider the last location-calculation step; they

can’t be applied to multihop localization algorithms directly.

Our SHOLOC scheme considers both information propa-

gation and location calculation. We will show later that fil-

ter mechanisms like [8] and [10] which only considering loca-

tion calculation step, will not survive in wormhole attacks, be-

cause bad location references are dominant in this case. Also,

SHOLOC doesn’t require to equip special hardware, and use

TESLA[13] which is energy efficient to authenticate broadcast

packets.

3. Model

3.1. Network Model

The network consists of a set of N sensor nodes, and part

of them are beacons (Nbea). Beacons’ position can be acquired

through GPS. Only beacons know their location, since equip-

ping every node with a GPS receiver is usually not feasible due

to cost and form factor limitations. Each node has an identifier.

We assume that all the network nodes are deployed ran-

domly in a specific network region of area (Sarea), and both

beacon nodes and ordinary nodes can move randomly in it. To

make ordinary nodes know their location, the whole network

periodically restarts localization.

To use TESLA, we assume that nodes are loosely synchro-

nized. Beacon nodes can easily be synchronized if they are

equipped with GPS. Ordinary nodes can synchronize to their

nearest beacons. Also, we assume that each node has the ini-

tial disclose key (end of their computed hashchain [13]) of all

beacon nodes. e.g., if there are 50 beacons, the hash output of

SHA1 is 160-bit, then each sensor only has a storage overhead

of 1k bytes.

3.2. Attacker Model

We assume that attackers can be internal or external, the

difference between them is whether they are valid nodes in the

network. Internal attackers have more information, they can

modify fields of beacons’ packets, e.g., reduce the hop-count,

which can result in hop-count reduction attacks as show in Fig-

ure 1. And they can also increase hopcount fields of pass-by

packets more than 1, result in hop-count increment attacks. Ex-

ternal attackers can launch wormhole attacks [4], which tun-

nel and replay packets without need of any information. Both
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Figure 2. TESLA usage in SHOLOC. The n-length

hashchain is produced by hash on a random chose value Kn,

initial key is K0, Keys used in IS will be disclosed in the fol-

lowed IL interval.

types of attacker can change the contents of beacons’ packets,

if packets don’t have integrity protection.

4. SHOLOC: a Secure Hop-Count based Local-

ization scheme

4.1. Beacon Information Authentication

Sensor nodes should be able to authenticate received bea-

cons’ packets. Otherwise, any node can forge a packet. Then a

question arises: choose symmetric cryptography or asymmetric

cryptography? Though asymmetric cryptography is indeed be-

coming feasible to be used in sensor networks, it’s still recom-

mended to reduce the usage whenever possible [3]. Also, if we

need to verified several packets in a timely manner, asymmet-

ric cryptography still has limitations. e.g., one Elliptic Curve

Cryptography (ECC) signature verification takes 1.62s [3], if

sensor node receive 20 beacons’ packets, it will take 32.4s total,

the location information will be too stale to use. TESLA [13]

differs from traditional asymmetric protocols in that TESLA

achieves asymmetry from clock synchronization and delayed

key disclosure, and it only uses efficient symmetric cryptogra-

phy when authenticating packets.

We propose to use a slightly modified version of TESLA

[13], which is shown in Figure 2. In original TESLA, keys are

assigned to all time intervals, but in SHOLOC beacons period-

ically restart localization, and packets are only sent at specified

intervals. In order to save many keys elapsed in spare intervals,

we propose not to bind keys to these intervals, but only bind

to re-localizing interval. We use IS to represent these short re-

localizing interval, and IL to represent long spare intervals.

4.2. Beacons Information Propagation Protocol

We now describe the protocol used in SHOLOC for location

information propagation. Our protocol uses TESLA described

in Section 4.1 to authenticate packets, and uses hash function

to make the hop-count unreducible and verifiable, which is in-

spired by secure distance vector route protocol like SEAD [5].

We note here that our protocol can also use alternative tech-

niques (e.g., digital signatures) to authenticate packets.

The protocol is comprised of two phases, as shown in Figure

3.

i) First, all beacons broadcast a BEALOC

packet to the network, which contains fields <

BEALOC, bid, loc, seq, ti, h0, c, mac, nodelist >, bid
and loc are beacon id and beacon location respectively, seq is

the unique sequence number of the packet, ti is the interval

number of TESLA, h0 is hash result of a random chose value

hr, c is the correction (average length of one hop) of beacon,

mac is the message authentication code (MAC) generated

by using the key Ki in current interval, nodelist is the path

the packet passed. When a node receives a BEALOC packet

which is fresh to it, it first checks that whether the arrival time

Tr < T0 + ti ∗ (IS + IL) + d ∗ IS −∆, where T0 is the initial

time, d is the delay of TESLA which is 1 in our scheme, ∆ is

the maximum synchronization error between any two nodes.

If the time condition holds, it means that the sender hasn’t

disclose the Ki yet and the packet is valid. Fresh means that

the node hasn’t heard the < bid, seq > pair before or the length

of attached nodelist (hop-count) is smaller than the length of

same < bid, seq > pair received before (i.e., a shorter path

discovered). If the packet is valid, it further checks whether the

predecessor has added its id in the nodelist, if so it replaces the

hash field with hj = H(hj−1, selfId), attaches selfId in the

nodelist field of the packet and forwards it again. Nodes carry

on this process until all packets reach MAX PRO HOP
limit.

ii) Second, when the IL time interval following IS arrives,

beacons broadcast AUTH packets to disclose the key Ki used

in IS , and also disclose the random chose value hr. Each

node received Ki can verify it by hashing to a key authenti-

cated previously, as doing in TESLA. Then nodes can authen-

ticate the received BEALOC packets by computing MACs of

those packets and comparing MACs with their mac fields. Also

the hash field can be checked by comparing received hj with

H(..., H(B, H(A, H(hr)))).

Beacon: h0 = H(hr),mac = MACKi
(BEALOC, bid, loc, seq, ti, h0, c)

Beacon→ *: < BEALOC, bid, loc, seq, ti, h0, c, mac, () >

A: h1 = H [A, h0]
A→ *: < BEALOC, bid, loc, seq, ti, h1, c, mac, (A) >

B: h2 = H [B, h1]
B→ *: < BEALOC, bid, loc, seq, ti, h2, c, mac, (A, B) >

. . . . . . (MAX PRO HOP)

Beacon→ *: < AUTH, bid, seq, ti+1, hr, Ki >

A,B,..., forward AUTH packets until reaching MAX PRO HOP

Figure 3. Information propagation in SHOLOC.

When the above protocol ends, each node gets nearby bea-

cons’ location information, and the hop-count between them.

With the received correction c, each node can get location ref-

erences in the form < loc, dist >. Also, nodes have gotten the

shortest paths to nearby beacons as bonus. Then, nodes can use

LMS to estimate their locations, see Section 4.4.

Remark 1: Here, the corrections c (average length of one

hop) used by each node are the value of last localization round.



Usually, beacon nodes compute the corrections c using received

location information of other beacons, so we should send the

new calculated corrections c after receiving AUTH packets.

But follow our assumption, node randomly moves in the field,

and given the total node number isn’t changing very fast, the

hop length will not change too much, so we can save one packet

and use the corrections of last round, which are sent in the

BEALOC packets. Simulation results in Section 6.5 also con-

firm this.

When in the initial round, corrections can by estimated by

beacons following formula in [6].

dhopLen = r(1 + e−n −

∫ 1

−1

e−
n
π

(arccost−t
√

1−t2)dt) (1)

where r is radio range, n is the average neighbor number of

nodes, which can be computed as n = πr2N/Sarea[6]. In or-

der to mitigate the effects of paths including malicious nodes,

here beacons use median instead of mean to calculate the cor-

rections.

4.3. Detecting Wormhole Attacks

Wormhole attack [4], is a kind of severe attack in which at-

tackers tunnel packets in one location to another location and

then replay them. This kind of attack can succeed without need

of any information, and communication authenticity and con-

fidentiality have no effect on it. If a wormhole link presents,

all the packets will be tunneled to other side and form bad loca-

tion references there, and then bad references may be dominant.

Filter mechanisms like [8] [10] can be resistant to at most 50%

outliers [8]. So only using filter mechanisms like [8] [10] is not

resistant to wormhole attacks. This is confirmed by simulation

in Section 6.3.

We propose to employ beacon nodes to detect worm-

hole attacks. Each beacon node Bi, if it has received an-

other beacon node Bj’authenticated location information <
locBj

, hopcount >, it then check if:

distance(Bi, Bj) > hopcount ∗ r + 2vmax(Ts − Tr) (2)

where r is the radio range, vmax is the maximum possible

speed, Ts and Tr are the sending and receival time of Bj’s

BEALOC packet. Beacons are synchronized so we ignore the

clock difference here. If Inequality 2 hold, then beacon node

Bi can conclude that the path from Bj to it has a wormhole.

Because given the radio range is r, then packets from Bj can’t

travel hopcount hops to reach Bi, unless there is a wormhole.

We can easily see that the false positives is zero, and in Section

5.1, we will analysis the detection ratio.

If wormhole is detected, beacons can report this to base sta-

tion to take some actions, e.g., locate the wormhole and manu-

ally remove it. We note here that we don’t rely on sensor nodes

to filter these tunneled location references, it’s the responsibly

of the base station, etc.

4.4. Location Estimation Using LMS

We use least median of squares (LMS) to filter bad location

references and estimate nodes’ location. Since if there are ma-

licious beacon nodes who send wrong location, part of location

references will be bad. LMS algorithm was proposed in [14].

Compared with least squares (LS, MMSE) algorithms, LMS

is more robust to outliers. Instead of minimizing the summa-

tion of the residue squares, LMS minimizes the median of the

residue squares. Li et al. use LMS method to reduce the effect

of bad location references in [8]. We choose the LMS-based

algorithm instead of another Attack-Resistant MMSE by Liu et

al. [10], because the latter [10] needs to know the maximum

measurement error, which can’t be calculated directly in Hop-

Count based localization algorithms.

LMS hasn’t been studied in multihop localization algorithms

like Hop-Count based localization algorithms. We implement

the subsamples based LMS ([14], Chapter 5) in location esti-

mation, while the LMS parameters are the same as in [10]. We

find that LMS doesn’t work well as it supposed to be (50% out-

liers), fortunately here we only need LMS to defeat quite a few

malicious beacons. We give the simulation results in Section

6.2.

5. Analysis

In this Section, we analysis the detection probability of

wormhole attacks in SHOLOC, and give a brief security analy-

sis of SHOLOC.

5.1. The Detecting Probability of Wormhole Attacks

For simplicity we don’t consider the effect of motion here.

We use Pdetect to represent the detection probability of worm-

hole attacks. Figure 4(a) illustrates a wormhole with two end-

points. We use PleftDetect and PrightDetect to represent the de-

tection resulted by packets from right endpoint to left endpoint

and left endpoint to right endpoint respectively. Because of the

symmetry property it’s easy to see PleftDetect = PrightDetect.

According to our detection mechanism in Section 4.3, both left

and right beacons should detect the wormhole at the same time,

so

Pdetect = PleftDetect (3)

We consider PleftDetect with different cirque parts, and

there are MAX PRO HOP cirques at the left endpoint of the

wormhole link. It’s difficult to give a close formula to compute

the probability, we will show the computation process step by

step. Given each cirque detecting independently, we have

PleftDetect = 1−

MAX PRO HOP∏
i=1

(1−Pleft i cirqueDet) (4)
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(b) Demonstrating the detection

probability of wormhole attacks.

MAX PRO HOP is 4 here.

Figure 4. Analysis of wormhole detection.

where, Pleft i cirqueDet is the detection probability of the i
cirque at left, which can be computed using

Pleft i cirqueDet =

Nbea∑
j=1

P j beaIn i cirque×(1−(1−PR)j)

here, P j beaIn i cirque is the probability of j beacons lying

in the i cirque, PR is the detection probability of a beacon in i
cirque at left.

PR = 1 −

MAX PRO HOP∏
k=1

(1 −

∫∫
i cirque

PM )

where

PM =The probability of area [The right k cirque - the circle

whose centre is A and radius is (i+k-1)r] have ≥ 1 beacons,

here A is a point in the i cirque integral.

(Assume beacon nodes follow Poisson distribution, the

probability of x beacons lying in an area of S can be computed

by P (x) = (D∗S)x

x! e−D∗S [6], where D is the density of beacon

nodes, D = Nbea

Sarea
.)

We calculate the detection probability using matlab to give

an intuitive impression. The results are shown in Figure 4(b).

Radio range is set to be 15, area is 100×100m2. We set the the-

oretical hop length u to be 11.7m, because [11] shows that 15

is a critical neighbor number to Hop-Count based localization,

and applying formula 1 we get 11.76m. We vary the wormhole

length and the beacon node number. And results indicate that

the detection probability is high when there are sufficient bea-

con nodes. Simulation results of detection ratio are presented

in Section 6.1.

5.2. Security Analysis

Internal attackers may want to change the hop-count infor-

mation in beacons’ packets. But since they only get the hash

results of h0 and ids, according to the property of hash func-

tion, they can’t remove preceding nodes in the path to reduce

hop-count. Also the successor nodes will check whether the

preceding node added its id into the nodelist, so it can’t for-

ward packets without adding itself into the path. On the other

side, the hop-count increment attack, which has the effect of

increasing the hop-count field more than 1, turns out to be an

ineffective attack. It has little effect on location algorithms, be-

cause there are multiple paths to a node which don’t pass that

malicious node, and other paths of the same length will be se-

lected instead if that malicious node adds the length of the path

passing it. Then location results will be almost the same as

when malicious nodes don’t lie in the networks. This is also

confirmed by simulation results, see Section 6.4.

Our wormhole detection mechanism in Section 5.1 has a

high probability to detect a wormhole, and it also shows a high

probability to detect malicious beacons in Section 6.2. Also,

TESLA can enable sensor nodes to authenticate received pack-

ets and ensures integrity [13], so node can’t forge beacon pack-

ets. LMS based location estimation is also resistant to few bad

location references (malicious beacons).

6. Simulation Results

We simulate our algorithm in matlab. We randomly place

300 nodes in 100×100m2 area, 30 of them are beacon nodes,

radio range is 15, the MAX PRO HOP is set to 4. All results

are based on 100 independent runs if not state explicitly.

6.1. Detect Ratio of Wormhole Attacks

First we simulate wormhole detection ratio for different

beacon numbers and different wormhole lengths. Results are

shown in Figure 5(a). We can see that detection ratios are high

when there are more than 30 beacons, over 95%.

We also simulate in a different manner: we randomly choose

two locations in the area to form a wormhole, and then we carry

out the detection. Our results based on 1000 runs are show in

Figure 5(b). We can see that the detect ratio is already more

than 98% when there are 30 beacons.

6.2. Localization With Malicious Beacons

LMS based location estimation with malicious beacons is

also simulated. Here if a beacon is malicious, it will report its

location as a random selected location from the area. Previous

works (e.g., [10]) only study single-hop (beacon and node are

only 1 hop) case. We can see from Figure 5(c) that LMS per-

forms better than LS when there are malicious beacons. But

when the number of malicious beacons is more than 5(∼16%

of total beacons), LMS location error grows linearly: 12 ma-

licious beacons (40% of total beacons) lead to location error

more than 100%, which may be due to the error-accumulation

of multi-hop. Fortunately, our wormhole detection mechanism

is more sensitive to malicious beacons. When there are merely

1 or 2 malicious beacons, the wormhole detection mechanism

will detect them at very high ratio (about 99%) and report them

to base station. They tell base station that these beacons are



5
15

25
35

45
55

10
20

30
40

50
0

0.2

0.4

0.6

0.8

1

Anchor Node NumberWormhole Length

D
et

ec
ti

o
n
 R

at
io

(a) The simulation wormhole detec-

tion ratio.
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(e) The impact of hop-count incre-

ment attacks.

400 600 800 1000 1200
0

20

40

60

80

100

Time

L
o
ca

ti
o
n
 E

rr
o
r[

%
 o

f 
ra

d
io

 r
an

g
e]

Using current corr

Using last round corr

(f) The impact of using the correc-

tions of last round.

Figure 5. Simulation results.

malicious beacons or there is a wormhole (must be one of the

two cases). The base station can then take actions according to

this.

6.3. The Impact of Wormhole Attacks

We simulate the impact of different wormhole lengths to lo-

calization, and the resistant ability of LMS to wormhole attacks.

Results are shown in Figure 5(d). We can see that LMS based

estimation performs a little better than MMSE based estima-

tion, but it still have too high location error, e.g., when there is

a 30m length wormhole, location errors of LMS and MMSE are

61% and 71% respectively, comparing to the normal 30%. Re-

sults indicate that LMS fails to “filter” these tunneled location

references.

6.4. The Impact of Hop-count Increment Attacks

We simulate malicious nodes adding hop-count field (or sim-

ilar effect, e.g., stuffing nodelist in SHOLOC) of beacon lo-

cation packets, to evaluate hop-count increment attacks. Here

we let malicious nodes add at most 2 hops max(hopcurrent +

2, MAX PRO HOP − 1), Figure 5(e) shows the simulation

results. We can see that even 20% nodes are malicious, they

still have little effect on localization results. The location errors

of three cases: no malicious nodes, existing malicious nodes,

and removing these malicious nodes from network, all are quite

approximate. We can conclude that Hop-Count based localiza-

tion algorithms are inherently robust to hop-count increment

attacks, and we only need to prevent the hop-count reduction

attacks like we did in SHOLOC.

6.5. The Impact of Using the Corrections of Last

Round

We do simulation to decide whether the error introduced by

using the corrections of last round is acceptable. When nodes

distribute uniformly and move independently, we believe that

the random waypoint model is most closest to this situation.

We implement that all the nodes (include beacon nodes) run un-

der the random waypoint model, in which nodes in a large area

choose some destination randomly, and move there at a random

speed chosen from (Vmin, Vmax], where Vmin and Vmax are

the minimum and maximum speed of the nodes respectively.

To mitigate the well-known speed decay problem of random

waypoint model, we set the Vmin away from zero, also, we

run a swarm up procedure before measurement. In our simula-

tion, Vmin is set to be 2m/s, and Vmax is 4m/s. We make a re-

localization every 100s, the swarm up procedure endure 200s.

Results are shown in Figure 5(f). The location errors of using

current correction and using last round correction to calculate

location are almost the same.

7. Conclusion

In this paper, we have proposed a secure Hop-Count based

localization scheme SHOLOC, which, to the best of our knowl-

edge, is the first secure localization algorithm considering mul-

tihop situation. We develop a protocol to enable sensor nodes

to authenticate received beacon information. We show that only

considering filter mechanisms such as LMS can’t defeat worm-

hole attacks and we proposed to employ beacon nodes to de-

tect wormhole. LMS location estimation is also studied in our

scheme. Theoretical analysis and simulation results are also

given.

For future work, we plan to develop filter algorithms to be

used in more complex environments such as concave areas with

adversaries.
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