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Abstract: Directed fuzzing aims to focus on fuzzing specific locations within a target program to
enhance the efficiency of vulnerability discovery. However, directed fuzzing may yield fewer vulner-
abilities and obtain lower code coverage when the specified locations have little to no vulnerabilities.
Additionally, the existing directed fuzzing approaches often overlook the differences in variable
values when calculating distances between seeds and specific locations. In order to address these
issues, this paper introduces RegFuzz, a method that improves seed scheduling in directed fuzzing.
RegFuzz utilizes a linear regression model to predict the effectiveness of a seed and allocates more
fuzzing opportunities to efficient seeds. Specifically, first, RegFuzz defines several labels with the cor-
responding trainable weights for each seed. These labels encompass seed coverage, crash efficiency,
seed distance, and more. In the calculation of seed distance, RegFuzz takes into account not only the
basic block distance but also the variable distance contained within those basic blocks. Second, the
linear regression model continually optimizes the label weights during fuzzing, and these optimized
weights are employed to predict the effectiveness of seeds. In comparison with AFLGo, AFL, and
AFL++, RegFuzz demonstrates higher code coverage and a more efficient bug-finding capability
across seven real-world open-source programs.

Keywords: fuzz testing; directed fuzzing; linear regression; seed scheduling

1. Introduction

Directed fuzzing [1] is an advanced technique used in the field of fuzzing. Unlike gen-
eral fuzzing [2–4], which aims to cover as much code and discover as many vulnerabilities
as possible throughout the entire program, directed fuzzing [1,5] focuses on specific parts
of the program to achieve code coverage and vulnerability discovery. Directed fuzzing is
particularly suitable for scenarios such as verifying the historical patches of the PUT. This
involves conducting intensive fuzzing on the patched code to validate the effectiveness of
the patch and ensure that no new vulnerabilities are introduced [6–8]. In directed fuzzing,
the CFG (control flow graph) and CG (call graph) of the program under test (PUT) are
commonly utilized to calculate the distance between the basic blocks of the current seed
and the target basic blocks. The technique emphasizes fuzzing seeds that show promise,
often indicated by a shorter distance [1,5].

However, directed fuzzing does have certain limitations. First, if the specified part
of the program code that users are targeting for vulnerability discovery contains little
to no vulnerabilities, the majority of the fuzzing efforts dedicated to that part would be
rendered ineffective, whereas the other areas of the program remain unexplored. As a
result, the overall code coverage achieved may be low. In such situations, users may prefer
directed fuzzers that automatically extend their scope of fuzzing to include other parts of
the program as well. Second, most existing directed fuzzers, such as AFLGo [1], primarily
consider superficial coverage information when scheduling seeds. For instance, directed
fuzzers [1,9–11] employ various calculation methods to determine the distance between
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the current basic blocks and the target basic blocks. However, they often overlook critical
variable information within the target basic blocks. This variable information typically
plays a pivotal role in triggering program vulnerabilities, implying that a vulnerable
path not only needs to be covered but also requires specific values to be assigned to the
variables [12].

In this paper, we present RegFuzz, a solution for seed scheduling in directed fuzzing [13].
RegFuzz effectively addresses the issue of low coverage in directed fuzzing and enhances
vulnerability discovery efficiency through its dynamic linear regression-based prediction
model. First, RegFuzz introduces four fuzzing labels for seeds: coverage efficiency, crash
efficiency, seed distance (including variable distance), and fuzzing speed. Second, during
the fuzzing process, each seed is assigned a score based on its label values and the cor-
responding label weight values. Seeds with higher scores are given more opportunities
for fuzzing. Finally, RegFuzz dynamically adjusts the label weights based on the fuzzing
results, enabling the continuous evaluation of seed scores. In order to evaluate the per-
formance of RegFuzz, we conduct a comparative analysis using state-of-the-art fuzzers,
including AFL [2], AFLGo [1], and AFL++ [14], using seven open-source programs. The
results demonstrate that RegFuzz achieves superior performance in terms of code coverage
and vulnerability discovery. In summary, this paper makes the following contributions:

• We have devised four distinct labels for each seed, capturing essential aspects such
as code coverage, seed distance, execution efficiency, and vulnerability discovery
efficiency.

• We have introduced a linear regression model to train and assign labels to seeds,
thereby granting more fuzzing opportunities to those seeds with promising potential.

• We have implemented a fully functional prototype of RegFuzz, applied it to fuzz
seven open-source programs, and conducted a comparative analysis against three
state-of-the-art fuzzers. The results demonstrate the superior performance of RegFuzz
when compared to other existing fuzzers.

2. Background
2.1. American Fuzzy Lop (AFL)

AFL [2], developed by security researcher Michal Zalewski, is a coverage-guided
fuzzing system renowned for its effectiveness. It employs a coverage-based approach
to guide seed mutation, thus enhancing code coverage and increasing the likelihood
of vulnerability detection. By leveraging program coverage feedback, AFL effectively
explores the program’s logic execution space. This concept of greybox fuzzing has inspired
researchers in the security industry, leading to the development of similar efficient greybox
fuzzers like LibFuzzer [15], VUzzer [12], and BFF [16]. The basic framework of AFL is
illustrated in Figure 1. The fuzzer comprises several key modules, including the program
monitor module, seed generator module, crash detector module, and crash filter module.
Each of these modules serves a specific role and is explained as follows:

• Program monitor: This module provides an execution environment for the target
programs and monitors their runtime information during the fuzzing process. It
captures the program’s running status and, when a seed triggers a program crash,
preserves the seed for vulnerability analysis.

• Seed generator: The seed generator serves as the core module of the fuzzing system
and significantly influences the fuzzing outcomes. It relies heavily on seed scheduling
and mutation strategies, which involve selecting promising seeds and determining
how to mutate them effectively.

• Crash detector and filter: The crash detector and filter play a critical role in the fuzzing
process. Treating all abnormal program states as vulnerabilities would result in a high
false positive rate. In order to address this, the fuzzing system preserves the seed that
triggers an exception for subsequent replay verification, ensuring a low false alarm
rate. The operation of vulnerability detectors may vary across different operating
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system platforms. For instance, on Linux, the fuzzer detects and filters vulnerabilities
based on the specific signals triggered during program crashes (such as SIGSEGV).

Program Monitor

Seed Generator

Crash Detector

Crash Filter

Seed Files

Target 

Program

Fuzzer

Seed Files
Runtime 

Info

Crash Info

Crashes

Vulnerabilities

Figure 1. The framework of AFL.

2.2. Linear Regression Model

Regression analysis is a modeling technique that allows us to study the relationship
between a target variable and predictor variables. Linear regression is one of the widely
used regression models. It assumes a linear correlation between the target value and the
predictor labels, satisfying a multivariate linear equation. By constructing a loss function,
the goal of linear regression is to determine the optimal parameters that minimize the loss
function. The regression function can be expressed using Equation (1):

ŷ = hθ(x) = θ · x = θ0 + θ1x1 + θ2x2 + ... + θnxn, (1)

where ŷ represents the predicted value, θ represents the label weight vector, x represents the
label value vector, and θ(x) represents the loss function. In this equation, the independent
variable x is assumed to be known. The objective of linear regression is to train a set of label
weight vectors θ that best align with the observed data, enabling the linear regression model
to make more accurate predictions. In order to accomplish this, we need to determine the
parameter values of the θ vector in the linear model based on the available data points.

Each training model is assessed using an evaluation criterion, and to evaluate the
training outcomes of linear regression models, the minimum mean square error (MSE)
equation is commonly employed. The MSE equation is defined as Equation (2):

MSE = (X, hθ) =
1
m

m

∑
i=1

(θTx(i) − y(i)), (2)

where m represents the number of instances, θT represents the transposition of the label
weight vector of each instance, x(i) represents the label vector of the ith instance, and y(i)

represents the actual value of each instance.
After completing the model training, the model will be updated based on the label

weight values corresponding to the set of training models with the lowest MSE, as shown
in Equation (3):

θ = (XTX)−1XTY, (3)

where X represents the combination of each instance in training, XT represents the transpo-
sition of X, and Y represents the actual value.
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During the fuzzing process, the effectiveness of the seeds is typically assessed based
on multiple labels, such as code coverage, seed distance, and more. These labels impact the
fuzzing process from different perspectives, aligning well with the influence of multiple
independent variables on the regression outcomes. Furthermore, as numerous mutations
are applied to all seeds during fuzzing, it creates a natural training environment that is
highly suitable for training the regression model.

3. Motivation

On the one hand, as mentioned earlier, directed fuzzing may not automatically switch
to fuzzing other unspecified parts of the program swiftly, even when the specified part
of the program contains few or no vulnerabilities. This limitation can result in low code
coverage and a reduced number of discovered vulnerabilities. Directed fuzzing locks the
locations in advance during the compilation phase and conducts in-depth testing near
the targeted basic block locations during the fuzzing execution. For instance, seeds with
smaller basic block distances are given higher priority and allocated more resources for
fuzzing [1]. While this approach works well when the specified locations contain numerous
vulnerabilities, it becomes less effective when the specified locations have fewer or no
vulnerabilities.

On the other hand, most existing directed fuzzers solely focus on coverage information
when selecting seeds for fuzzing. However, in many cases, the values of variables play a
crucial role in triggering vulnerabilities. Let us consider the code snippet of CVE-2023-28856
shown in Listing 1 (present in Redis before v7.0.11) as an example. This vulnerability is only
triggered when the variable incr has a large or NaN (not-a-number) value. Otherwise, all
lines in the function execute without any issues. Thus, if only code coverage is considered
while ignoring variable values, it becomes challenging to discover such vulnerabilities.

Listing 1. Simplified code snippet of CVE-2023-28856.
1 void hincrbyfloatCommand ( c l i e n t * c ) {
2 / / . . .
3 i f ( getLongDoubleFromObjectOrReply ( c , c−>argv [3] ,& incr ,NULL) != C_OK) return ;
4
5 / / L a t e r added c o d e f o r f i x i n g t h e v u l n e r a b i l i t y
6 / / i f ( i s n a n ( i n c r ) || i s i n f ( i n c r ) ) {
7 / / a d d R e p l y E r r o r ( c , " v a l u e i s NaN or I n f i n i t y " ) ;
8 / / r e t u r n ;
9 / / }

10
11 i f ( ( o = hashTypeLookupWriteOrCreate ( c , c−>argv [ 1 ] ) ) == NULL) re turn ;
12 / / . . .
13 }

4. The RegFuzz Approach
4.1. Overview

Essentially, RegFuzz leverages linear regression to predict the efficiency of seeds. It
introduces four fuzzing labels for seeds: coverage efficiency, crash efficiency, seed distance,
and fuzzing speed. Although seed distance aligns with existing directed fuzzing techniques,
we also incorporate the consideration of variable distance. Additionally, we believe the
other three labels are crucial for the success of fuzzing, and additional labels can be included
if required. During the fuzzing process, each seed is assigned a score based on the product of
its label values and the corresponding label weight values (Equation (1)). Seeds with higher
scores receive more opportunities for fuzzing. Furthermore, RegFuzz dynamically adjusts
the label weights based on the fuzzing results, allowing for the dynamic evaluation of seed
scores. As a result, RegFuzz explores other parts of the program when directed fuzzing
encounters limitations, thus improving the overall efficiency of vulnerability discovery.

The framework of RegFuzz is illustrated in Figure 2. Prior to the fuzzing execution,
RegFuzz conducts program analysis to obtain the call graph (CG) and control flow graph
(CFG). These CGs and CFGs are utilized to calculate both the basic block distance and
variable distance within the program. During the instrumentation phase, the fuzzer incor-
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porates the distance information into the target program. At runtime, RegFuzz records the
basic blocks traversed by each seed and monitors the current values of the variables. It uses
the instrumented distance information to calculate the seed distance while also gathering
the necessary information to compute the values for the remaining three seed labels. Within
the fuzzing loop, RegFuzz employs regression predictions to generate seed scores, enabling
the scheduling of seeds based on their scores.

Source code Graph 
analyzing

CFG

CG

Distance 
calculation

Basic block 
distance+variabl

e distance

Instrumentation

Instrumented 
programFuzzing 

Seed pool

Seed regression 
prediction

Sorted seed

Figure 2. The framework of RegFuzz.

4.2. Seed Labels

According to the overall introduction of the RegFuzz framework in the previous
subsection, RegFuzz mainly implements a seed scheduling strategy in directed fuzzing,
and the most important basis is the definition of seed labels. Their details are shown in
Table 1.

Table 1. Seed labels and their definitions.

Seed Labels Description

Seed coverage efficiency Coverage generated by seed during fuzzing
Seed distance Distance between seed and target basic blocks

Seed crash efficiency Crashes generated by seed during fuzzing
Seed execution speed Average speed of seed fuzzing execution

The calculation method of seed coverage is shown in Equation (4), where Ns is the
number of new seeds generated by the seed, and Ft is the number of fuzzing times of
the seed.

Cove =
Ns

Ft
(4)

The calculation method of seed distance is shown in Equation (5), which equals the
sum of the basic block distance Bd from the seed to target basic blocks and the variable
distance Vd.

D = Bd + Vd (5)

The calculation method of seed crash efficiency is shown in Equation (6), where Cn is
the number of crashes found.

Ce =
Cn

Ft
(6)
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The execution speed of a seed is calculated as shown in Equation (7), where Tf is the
time that the seed consumed in fuzzing.

Fs =
Ft

Tf
(7)

Among these labels, the seed coverage efficiency, crash efficiency, and execution speed
can be directly calculated and obtained in the fuzzing. When calculating the seed distance,
it is necessary to know in advance the distance between all basic blocks and the target
basic blocks, as well as the distance between all monitored variables and their thresholds.
The concepts of basic block distance and variable distance and their specific calculation
methods will be described in detail in Section 4.2.1.

4.2.1. Basic Block Distance and Variable Distance

In the construction of seed labels, the most complicated one is the seed distance
computation. RegFuzz incorporates AFLGo’s method for calculating seed basic block
distance [1] and devises a customized calculation approach for variable distance. By
evaluating both the basic block distance and variable distance, RegFuzz can explore deeper
into the program, providing a more accurate assessment of how closely a seed is positioned
to the target basic blocks. It is important to note that the calculation of seed distance
requires prior knowledge of the CG and CFG of the program. Before the fuzzing process
starts, LLVM is used to traverse the CG and CFG, capturing information on all basic blocks
and functions. This information is then leveraged for subsequent seed distance calculations.
The detailed calculation methods for these two types of distances are as follows:

The calculation of the seed basic block distance needs to use the function level distance.
The function level distance is calculated as Equation (8) [1]:

d f (n, Tf ) =

[
∑

t f εR(n,Tf )

d f (n, t f )
−1
]−1

, (8)

where Tf represents a set of target functions, d f (n, Tf ) represents the harmonic average
of the sum of distances from function n to any reachable target function, and R(n, Tf )
represents the set of functions from n to the target function Tf in the CG. The distance
between function n and target function set Tf is calculated according to a path in the CG
graph, which is the shortest edge in the CG from n to t f . The harmonic average of n to the
sum of all t f distances is then calculated.

Then, for each basic block in the function, the basic block level distance can be cal-
culated using Equation (9). The calculation of basic block level distance is similar to the
function level distance, and it is also based on the function level distance. For each basic
block, we need to find the shortest path from the basic block to the target basic blocks in
the CFG. Then, according to the position of the current basic block and target basic blocks
in the CFG, there are three calculation methods [1]:

db(m, Tb) =


0,

c ·minnεN(m)(d f (n, Tf )),[
∑tεT(db(m, t) + db(t, Tb))

−1
]−1

,
(9)

where db(m, Tb) is the harmonic average of the total distance from m to the reachable target
basic blocks in the CFG. Tb refers to the target basic block set, N(m) is the set of all functions
called by the current basic block m, and T is a set of basic blocks included in the CFG. From
Equation (9), it can be seen that if the current basic block m is in the target basic blocks, then
the basic block distance is 0. If the current basic block m is not in the target basic blocks but
is within the current CFG range, the calculation rule is shown in the middle. In other cases
(that is, the current basic block and the target basic blocks are in different CFGs), the basic
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block distance is equal to the basic block distance of the two CFGs, adding the minimum
distance to the target basic blocks.

When calculating variable distance, the calculation method is similar to the above
calculation method. First, we need to find out the marked variable set V (including the
function parameter variables and local variables contained in Tf ) in Tb and record the
threshold value corresponding to each variable. In the dynamic execution process, the
fuzzer discovers the current value of a variable, divides it by its corresponding threshold
value as the variable current distance, and sums up all variable distance as total variable
distance Vd:

Vd = ∑
tεV

tlim
t

, (10)

where V is the marked variable set, t is the variable in the subset V, and tlim is the threshold
value of the current variable.

After implementing the above basic distance calculation method and dynamically
instrumenting the program, the program will calculate the distance from the seed to the
target basic blocks as Equation (11), combined with Equation (5):

D = Bd + Vd = d(s, Tb) + Vd =
∑mεξ(s) db(m, Tb)

|ξ(s)| + Vd, (11)

where s is the current seed, d(s, Tb) is the distance from the current seed to target basic
blocks set Tb, ξ(s) is the execution path of the seed (a basic block execution path of seed s),
and Vd is variable distance.

After getting the distances of all seeds, in order to ensure fairness, the distances of all
seeds will be normalized to values between [0,1], using the maximum seed distance maxD
and the minimum seed distance minD, like AFLGo.

4.3. The Main Fuzzing Loop of RegFuzz

The main fuzzing loop of RegFuzz is depicted in Algorithm 1. Note that RegFuzz
trains and uses a seed prediction model at the same time during the fuzzing. The algorithm
takes three inputs: an initial seed set S, an initial label matrix X containing one vector
(one line) for each seed, and the initial label weight vector θ of the regression model.
RegFuzz first calculates the score for each seed in the seed set S, according to the linear
regression model (lines 1–3). This involves multiplying the four label values (Section 4.2) of
each seed with the corresponding label weight values, as described in Equation (1). After
that, it selects a seed, s, from the seed set and assigns energy according to the computed
score of s (lines 5–6). Then, it starts to fuzz the seed, s, by generating inputs from the seed
through mutations (lines 7–14). During fuzzing, if a mutated input, s′, triggers a new crash,
RegFuzz adds s′ to the crash set and updates the label vector of the seed, s (lines 9–10). If
the mutated input, s′, has new code coverage, RegFuzz adds s′ to the seed set as a new seed,
updates the label vector of seed s, and adds the initial label vector of the new seed, s′, to X
(lines 11–13). After all seeds complete a fuzzing cycle, RegFuzz sorts all seeds according to
their predicted scores (line 16), and the top 10% of seeds have a separate cycle of fuzzing
(lines 18–20). Finally, RegFuzz dynamically optimizes the label weight vector, θ, when it
has finished a fuzzing cycle, according to the MSE equation (Equation (3)), and goes back
to update the scores of all seeds and start the next cycle of fuzzing (lines 21).



Electronics 2023, 12, 3650 8 of 15

Algorithm 1 The main fuzzing loop of RegFuzz

Input: S: seed set, X: initial label matrix (one line for each seed), θ: initial label weight
vector

Output: C: crash set
1: for each seed s in seed set S do
2: s.score = CALCULATEREGRESSION(Xs, θ) . Seed score prediction
3: end for
4: repeat
5: s = SELECTSEED(S)
6: ρ = ASSIGNENERGY(s)
7: for i = 1; i <= ρ; i ++ do
8: s′ = MUTATION(s)
9: if the PUT crashes with s′ then

10: put s′ into C, UPDATE(Xs)
11: else if the PUT has new coverage with s′ then
12: put s′ into S, UPDATE(Xs), ADD(X, s′)
13: end if
14: end for
15: until one cycle finishes
16: S = SORT(S)
17: S′ = TOP(S)
18: for each seed s in seed set S′ do
19: execute lines 6 to 14
20: end for
21: UPDATEWEIGHT(θ), goto line 1 . Update the prediction model

5. Evaluation

We implemented a prototype of RegFuzz based on the greybox fuzzer AFL [2] and
reused some code from AFLGo [1] for seed distance calculations.

5.1. Experiment Configuration

Target programs: We tested RegFuzz on seven Linux open-source programs. These
programs are all from AFLGo’s experimental programs, and most of them also appear as
experimental programs in other AFL-type fuzzers. The detailed information is shown in
Table 2. All experiments were conducted without adding dictionaries.

Table 2. Target programs and fuzzing commands.

Target Format Command

cxxfilt txt ./cxxfilt
giflib gif ./gifsponge

libxml2 xml ./xmllint –valid –recover @@
objdump elf ./objdump -SD @@

mjs file ./mjs-bin -f @@
libming swf ./swftophp @@

lrzip lrz ./lrzip -t @@

Fuzzers: We compared the performance of RegFuzz to three AFL-type fuzzers: AFL
(v2.52b) [2], AFLGo [1], and AFL++ (v4.00c) [14]. The second one is a directed fuzzer, and
the other two are state-of-the-art general fuzzers.

Experimental platform: All experiments were completed on a 64-bit machine with
16 cores (Intel (R) Core (TM) i7-10870H CPU @ 2.20 GHz) and 16 GB RAM. The operating
system is Ubuntu 20.04. All target programs were fuzzed for 24 h, and each experiment
was repeated five times.
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Evaluation metrics: Our experiment uses relevant indicators to evaluate the perfor-
mance of fuzzers, namely, unique path, code line coverage, and generated crashes. In
addition, we also compare the average speed of vulnerability discovery. The experiment
uses afl-cov [17] to measure the code line coverage of target programs and uses Address-
Sanitizer (ASAN) [18] to calculate the number of unique crashes.

5.1.1. Code Coverage Analysis

The path coverage results and code line coverage results of each fuzzer on different
programs are shown in Table 3 and Figure 3. We can see that RegFuzz does not have the
limitation of directed fuzzing since its performance is much better than the directed fuzzer
AFLGo. Overall, RegFuzz is nearly consistent with AFL++ in path coverage and code line
coverage. In terms of path coverage, RegFuzz is nearly 40% higher than its base fuzzer
AFL and 15% higher than AFLGo. AFL++ combines the advantages of other excellent
fuzzers (MOPT, AFLFast, etc.). It also has a more complicated seed mutation strategy and
higher running speed. So, it performs very well in coverage. In almost all the programs
that were tested, AFL++ is in first or second place. RegFuzz’s seed prediction model plays
an important role in directed fuzzing, and its path coverage is much higher than AFLGo’s.
In all seven program evaluations, the overall average path coverage of RegFuzz is 15%
higher than that of AFLGo, and the average code line coverage is about 2% higher. This
is because AFLGo is a directed fuzzing fuzzer. It does too many invalid mutations and
tests near the target basic blocks. However, when RegFuzz performs directed fuzzing on
target code blocks but does not catch any crashes or new coverage, the label weight of the
seeds over a short distance is reduced, and according to the seed prediction model, seeds
will be tested at a large distance from the target code, which improves the performance
of directed fuzzing. In terms of code line coverage, RegFuzz has the highest code line
coverage in cxxfilt, libxml2, and lrzip, and AFL++ has the highest code line coverage in
the other four programs. Although AFL++ shows the best line coverage in a higher number
of programs, it only has a small lead over RegFuzz. Therefore, based on the coverage
experiment results, RegFuzz has good coverage performance.
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Figure 3. Average paths that AFL, AFL++, AFLGo, and RegFuzz found over five runs in 24 h.

5.1.2. Vulnerabilities Analysis

The vulnerability discovery of all fuzzers is shown in Table 4. RegFuzz is better than
AFL and AFL++ and is slightly better than AFLGo in terms of vulnerability detection. This
is because directed fuzzers make it easier to generate crash inputs in the target code. The
result clearly shows that RegFuzz retains the benefits of directed fuzzing. In all programs
that detect vulnerabilities, such as cxxfilt, objdump, and lrzip, RegFuzz’s vulnerability
detection capability is stable and higher than AFL and AFL++, which reflects the advantage
of directed fuzzing. In objdump, the number of crashes detected by RegFuzz and the
number of crashes after deduplication are higher than that of AFLGo, which reflects the
fact that RegFuzz’s seed scheduling plays an important role and enables RegFuzz to find
vulnerabilities not only in the target code but also outside of the target code. For libxml2
and mjs, none of the fuzzers in the experiment found any crashes because we used the
latest software versions of the two pieces of software, and 24 h short-term fuzzing is not
enough time to find any crashes. The results of the vulnerability experiment show that
RegFuzz still has good ability in terms of vulnerability detection.
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In order to better evaluate RegFuzz’s vulnerability detection capabilities, Table 5 shows
the detection efficiency of the same vulnerabilities for different programs. All fuzzers
only detected the same vulnerability in four programs. These vulnerabilities have their
corresponding CVE (common vulnerabilities and exposure) numbers, which are CVE-2016-
4487 (cxxfilt), CVE-2018-8807 (libming), CVE-2017-8392 (objdump), and CVE-2018-11496
(lrzip), respectively. Table 5 shows that the CVE vulnerability detection efficiency (i.e.,
PoC generation) of AFLGo and RegFuzz is much higher than that of AFL and AFL++,
which further confirms that RegFuzz retains the vulnerability discovery ability of directed
fuzzing in specified locations. For example, in cxxfilt, libming, and objdump, AFL and
AFL++ detect related vulnerabilities at the same time, but AFL++ is slightly earlier than
AFL. In contrast, AFLGo and RegFuzz both complete the generation of PoC seeds within
one hour. During fuzzing, they can quickly generate relevant seeds by calculating seed
distance to traverse these basic blocks and trigger vulnerabilities to generate corresponding
PoC seeds. For lrzip, RegFuzz detected CVE-2018-11496 in 1 h and 38 min, while AFLGo
detected the vulnerability in 2 h and 10 min. This proves that the monitoring of critical
variables in target basic blocks plays a positive role.

Therefore, RegFuzz has a relatively stable performance boost, both in terms of the
number of vulnerabilities and the speed of vulnerability detection.

Table 3. The average of the evaluation metrics of the seven target programs.

Targets
Paths Line Coverage

AFL AFL++ AFLGo RegFuzz AFL AFL++ AFLGo RegFuzz

cxxfilt 4903 7818 7778/0 7881 16.92% 21.01% 20.53% 21.18%

giflib 3044 5052 4762 5048 13.16% 17.27% 15.03% 17.13%

libxml2 3375 10,910 10,883 11,330 42.28% 73.12% 72.25% 73.36%

objdump 7323 9626 7822 9147 40.07% 41.93% 40.31% 41.46%

libming 12,244 14,328 12,881 14,280 33.67% 37.05% 35.12% 37.05%

mjs 1412 1686 1533 1671 7.21% 7.62% 7.21% 7.56%

lrzip 8050 11,280 9362 11,266 44.56% 48.88% 45.23% 48.88%

Table 4. The number of crashes found by the fuzzers and the number of vulnerabilities after dedupli-
cation by ASAN.

Target AFL AFL++ AFLGo RegFuzz

cxxfilt 36/2 47/2 325/4 244/4
giflib 2/1 14/2 82/3 80/4

libxml2 0 0 0 0
objdump 15/2 23/2 88/2 106/3
libming 1/1 1/1 16/3 8/2

mjs 0 0 0 0
lrzip 0 7/1 34/2 40/2

Table 5. A comparison of Poc generation times among the fuzzers.

Target AFL AFL++ AFLGo RegFuzz

cxxfilt 3 h 32 m 3 h 10 m 6 m 6 m
objdump 7 h 44 m 6 h 29 m 35 m 33 m
libming 2 h 31 m 1 h 47 m 1 m 1 m

lrzip N 11 h 17 m 2 h 10 m 1 h 38 m
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5.1.3. Statistical Analysis

In order to prevent accidental factors in the experiment from affecting the performance
evaluation of the fuzzers [19], this section shows the statistical p value of the five repeated
experimental results of all the evaluations. Where p1 represents the p value of RegFuzz
to AFL, p2 represents the p value of RegFuzz to AFL++, and p3 represents the p value of
RegFuzz to AFLGo. As shown in Table 6, in terms of path coverage and code line coverage,
almost all p1 values and p3 values are less than 0.05 and most of them are also less than
0.01. Only p3 for libxml2 is slightly higher than 0.05, which indicates that the performance
of RegFuzz’s path coverage and code coverage is higher than that of AFL and AFLGo,
maintaining high stability. p2 remains around 0.05 for cxxfilt, libxml2, libming, and
lrzip, which shows that RegFuzz’s program coverage performance is similar to AFL++ for
these programs. For giflib, objdump, and mjs, p2 is greater than 0.05. This is because
in the fuzzing experiments of these programs, AFL++ finds more paths and covers more
lines of code than RegFuzz. As a directed fuzzer, RegFuzz has low code coverage when
the program target location triggers a crash because RegFuzz spends more time in these
places. In the programs for which p2 is greater than 0.05, RegFuzz triggers many crashes
at the program target location; it spends more time on directed fuzzing, resulting in low
code coverage, which further causes p2 to be greater than 0.05. However, since RegFuzz
has found more vulnerabilities, it is acceptable here.

Table 6. The p value in each evaluation.

Targets
Total Paths Line Coverage

p1 p2 p3 p1 p2 p3

cxxfilt 1.5× 10−4 6.4× 10−2 2.6× 10−2 6.5× 10−4 7.1× 10−2 1.1× 10−3

giflib 1.7× 10−3 8.0× 10−1 3.4× 10−2 1.7× 10−4 2.8× 10−1 4.1× 10−4

libxml2 4.2× 10−5 2.1× 10−2 5.5× 10−2 3.3× 10−6 4.1× 10−2 6.3× 10−2

objdump 4.7× 10−3 3.9× 10−1 2.7× 10−3 1.3× 10−2 3.6× 10−1 3.4× 10−3

libming 2.4× 10−2 2.3× 10−2 5.1× 10−3 2.2× 10−3 6.1× 10−2 4.6× 10−3

mjs 8.2× 10−3 4.5× 10−1 1.2× 10−2 4.3× 10−2 1.5× 10−2 2.7× 10−2

lrzip 7.5× 10−3 7.0× 10−2 6.3× 10−4 7.9× 10−3 5.7× 10−2 7.4× 10−4

6. Discussion

We consider RegFuzz to be optimally aligned with those fuzzing scenarios in which
users aim to accentuate fuzzing efforts on specific parts of a program while also embracing
the possibility of uncovering vulnerabilities in other parts. This efficacy stems from Reg-
Fuzz’s capacity for directed fuzzing. Furthermore, the tool seamlessly transitions towards
fuzzing other parts of the program if the initially designated parts display minimal vul-
nerabilities or none at all. Such a scenario may transpire when a user initiates the process
of familiarizing themselves with a program. Within this context, a user might entertain
security concerns regarding a particular component of the program while simultaneously
harboring uncertainty about the presence of vulnerabilities in other segments.

While RegFuzz offers the advantages of directed fuzzing to uncover vulnerabilities
within specific designated areas, it may not be optimally effective in detecting certain spe-
cialized vulnerability types, such as memory leaks or "use after free" (UAF). This limitation
arises from the general nature of the seed labels currently employed in RegFuzz, which are
not tailored to the characteristics of these specific vulnerability types. In order to address
this issue, additional seed labels could be integrated to enhance support for targeting these
specialized forms of vulnerabilities, as demonstrated by previous studies [20,21].

Furthermore, both RegFuzz and the prevailing popular fuzzing systems exhibit known
limitations. Notably, they are confined to identifying a subset of vulnerabilities and bugs.
For instance, their capability to detect issues that do not lead to program crashes, such
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as logic implementation errors and user interface (UI) misrepresentations, is notably con-
strained. This limitation is underscored by a recent investigation [22], which reveals
that a considerable portion of common weakness enumeration (CWE) classes remains
undiscovered within the context of the OSS-Fuzz project (i.e., they are not identified as
fuzzbugs [22]). Moreover, it is noteworthy that merely 9.2% of OSS-Fuzz fuzzbugs align
with a corresponding CVE entry for the respective project [22].

7. Related Work
7.1. General Fuzzing

The main objective of general fuzzing is to cover as much program code as possible
during fuzzing so as to discover vulnerabilities in each component of the PUT. Usually,
researchers enhance fuzzing techniques by focusing on optimizing either the seed mutation
strategy or the seed selection strategy. In the context of seed mutation strategy optimization,
several approaches have been explored, such as those presented in [4,12,23–29]. These
methods aim to identify the most effective mutation techniques and the appropriate po-
sitions for seed mutations during the fuzzing process. For instance, MTFuzz [30] utilizes
multi-task neural networks to reduce model training costs, and this predicts the coverage of
different seeds. This prediction helps guide seed mutation based on the expected coverage.
On the other hand, EMS [3] employs a customized probabilistic byte orientation model
(PBOM) to probabilistically generate desired mutation byte values based on the input bytes.

Regarding seed selection strategy optimization, there have been significant research ef-
forts in this area as well, as evidenced by the works in [25,31–35]. For instance, MEUZZ [33]
employs supervised machine learning to schedule seed selection, predicting which seeds are
more likely to yield better fuzzing results. Another notable contribution is K-Scheduler [35],
which uncovers the potential edge coverage from seed mutations by examining the CFG
and, subsequently, optimizes seed selection scheduling based on these insights.

In contrast to the existing general fuzzing techniques, RegFuzz takes a different
approach by dynamically balancing directed fuzzing and general fuzzing. By doing so,
it aims to complement general fuzzing techniques and provide a more comprehensive
fuzzing solution.

7.2. Directed Fuzzing

Directed fuzzing is an enhanced fuzzing technique designed to focus on fuzzing
specific target positions [1,5,8,10,36]. Various approaches have been proposed to improve
the efficiency and effectiveness of directed fuzzing. For instance, AFLGo [1] calculates
the distance from the seed to the target basic blocks and employs a simulated annealing
algorithm to allocate mutation energy to each seed. The seeds closer to the target receive
more energy, enabling better exploration of the target area during fuzzing. Savior [8] uses a
sanitizer to execute the target and marks potential vulnerability points for monitoring before
commencing the fuzzing process on the target location. BEACON [5] utilizes lightweight
static analysis calculations to trim redundant paths during runtime before the seed reaches
the target, significantly improving the speed of directed fuzzing.

Some directed fuzzers are specifically designed to discover particular types of vul-
nerabilities, such as UAFuzz [20] and UAFL [21]. These tools are particularly effective in
uncovering unique memory vulnerabilities like use after free (UAF) and double free (DF)
when targeting such specific issues.

However, when the specified target locations have few vulnerabilities, these directed
fuzzers often exhibit low code coverage and a limited vulnerability discovery capability.
In contrast, RegFuzz, as proposed here, effectively addresses this limitation by dynami-
cally balancing between directed fuzzing and general fuzzing. By quickly switching to
fuzz other areas, RegFuzz ensures that the overall fuzzing process remains comprehen-
sive and thorough, even when encountering regions with limited vulnerabilities or low
code coverage.
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8. Conclusions

By aiming to fix the shortcomings of the existing directed greybox fuzzing in seed
scheduling, we propose a seed prediction method, RegFuzz, which is based on linear
regression in directed greybox fuzzing. First, RegFuzz designs several regression labels
for seeds from seed code coverage, seed distance, etc. It uses these labels to establish a
prediction model to evaluate the seeds. Second, in fuzzing, the seed prediction model
is constantly trained to optimize the corresponding label weight values of different seed
labels. Finally, the prediction model is used to obtain a score for each seed and optimize
the seed scheduling strategy. The experimental results show that RegFuzz has greatly
improved code coverage and vulnerability discovery performance when compared to its
basis fuzzer AFL, AFL++, which is state-of-the-art fuzzer, and the directed fuzzer AFLGo,
which means RegFuzz could gain the merits of both directed fuzzing and ordinary fuzzing.
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