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Abstract: The publish/subscribe model has gained prominence in the IoT (internet of thing) network,
and both MQTT (Message Queue Telemetry Transport) and CoAP (Constrained Application Protocol)
support it. However, existing coverage-based fuzzers may miss some paths when fuzzing such
publish/subscribe protocols, because they implicitly assume that there are only two parties in a
protocol, which is not true now since there are three parties, i.e., the publisher, the subscriber and the
broker. In this paper, we propose MultiFuzz, a new coverage-based multiparty-protocol fuzzer. First,
it embeds multiple-connection information in a single input. Second, it uses a message mutation
algorithm to stimulate protocol state transitions, without the need of protocol specifications. Third, it
uses a new desockmulti module to feed the network messages into the program under test. desockmulti
is similar to desock (Preeny), a tool widely used by the community, but it is specially designed for
fuzzing and is 10x faster. We implement MultiFuzz based on AFL, and use it to fuzz two popular
projects Eclipse Mosquitto and libcoap. We reported discovered problems to the projects. In addition,
we compare MultiFuzz with AFL and two state-of-the-art fuzzers, MOPT and AFLNET, and find it
discovering more paths and crashes.

Keywords: coverage-based fuzzing; network protocol; publish/subscribe; multiparty-protocol
fuzzer; MQTT; CoAP; IoT; Preeny; security; desock

1. Introduction

Fuzzing [1,2] is an important way to discover vulnerabilities in programs. The basic idea of
fuzzing is to feed different inputs into a program under test (PUT) and keep monitoring its status for
any misbehavior. Coverage-based fuzzing [3–5] is categorised as greybox fuzzing [2,6]. Different from
traditional blackbox fuzzing [7,8], coverage-based fuzzing monitors the internal execution paths of
inputs, and saves the inputs as further mutation seeds if they exercise any new and interesting paths.
Though coverage-based fuzzing usually does not need sophisticated program analysis or the grammar
of program input like whitebox fuzzing [9], it is shown to be able to gradually exercise different parts
of the program and discover many vulnerabilities [3]. Now, coverage-based fuzzing is being both used
by the security industry [3,10] and researched by the academia [5,11–16].

Different network protocols are proposed in the internet of thing (IoT) domain [17–20] to fit the
unique requirements of IoT, and several important protocols support the publish/subscribe model [19].
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For example, the MQTT (Message Queue Telemetry Transport) protocol [21] uses the publish/subscribe
model as its core design, and the CoAP (Constrained Application Protocol) protocol [22] supports
to “observe” resources (a similar publish/subscribe model) by using a protocol extension [23]. The
publish/subscribe model provides loose coupling and scalability to the IoT network [19]: (i) publishers
and subscribers do not need to know the existence of each other, and do not need to be online at
the same time, (ii) one publisher could publish data to many subscribers and one subscriber could
subscribe data from many publishers, i.e., supporting a many-to-many communication model. In this
paper we focus on the fuzzing of two publish/subscribe protocols, MQTT and CoAP. They are widely
used in the IoT network, and are also supported by IoT cloud providers like Amazon and Microsoft
[24,25].

Currently, there are mainly two methods for network protocol fuzzing. The first method belongs
to blackbox fuzzing [19]. It includes general fuzzing tools like Boofuzz (Sulley) [26] and Peach [8], and
tools designed for specific protocols like TLS-Attacker [27]. These tools usually need users to write
scripts or codes to describe the formats of network messages and the transitions of protocol states.
They require the expertise on the protocols to get good fuzzing results, and the scripts and codes need
to be updated accordingly when the protocols have new versions. The second method belongs to
greybox fuzzing, which is to adapt coverage-based fuzzing tools to the fuzzing of network protocols.
The method is more promising since it generally does not need to know protocol specifications or write
codes. However, it needs a way to feed fuzzing inputs into the network program under test. One way
is to use desock (a module of Preeny) [28] to hook the socket functions like socket() and accept() 1

(recommended by AFL [3] for no code modifications required), another way is to send inputs through
ordinary sockets like AFLNET [15], and the last way is to modify the program source codes to make the
program read packets directly from memory buffers other than real network interfaces, like fuzzing
openssl in the Google OSS-Fuzz project [10]. The first two ways may introduce performance bottleneck
(as we later shown in Section 5.4). The last way may be not trivial since the modification may need
code refactoring.

Broker

Subscriber Publisher

Figure 1. A typical publish/subscribe process of the MQTT protocol (some CONNECT and ACK
messages are omitted for simplicity).

We can see that coverage-based fuzzers need less preparation before fuzzing, however, there is
another special problem when using them to fuzz the publish/subscribe protocols in IoT. Existing
coverage-based fuzzers implicitly assume that there are only two parties in the network protocols
(the fuzzers pretend to be one party when fuzzing another party), but there are three parties in the
publish/subscribe protocols. Considering a typical process of the MQTT protocol [21,29] in Figure 1, a
subscriber subscribes to the sensor/temperature topic first. When a publisher publishes a value to
the topic, the subscriber will receive the published value later. Such a process cannot be simulated by

1 The hooking is usually done by LD_PRELOAD, and the sockets returned to the PUT are hijacked to send (or receive) data to
(or from) stdout (or stdin). We further explain the design of desock later in Section 4.4.
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existing coverage-based fuzzers, this is because only the messages of a single connection are included
in a fuzzing input, and the fuzzer initiates only a single connection for each input [3,10,15]. Thus,
even if the fuzzer successfully simulates as a subscriber and sends the first SUBSCRIBE message in
the process, it cannot receive the third PUBLISH message, because there is no publisher sending the
second PUBLISH message during a fuzzing execution (also the broker server under fuzzing is restarted
for each input). The fuzzer may receive the PUBLISH message if it happens to subscribe to some
built-in topics, but it cannot make the broker server run the whole dynamic publish/subscribe process
shown in Figure 1. If there is a vulnerability in the corresponding execution path in the broker server,
the fuzzer cannot discover it. So, in general existing coverage-based fuzzers are not sound for such
multiparty protocols.

In this paper, we propose a coverage-based multiparty-protocol fuzzer called MultiFuzz. We
compare MultiFuzz with existing fuzzers in Table 1. MultiFuzz does not need any protocol
specifications, or any coding by the users. It can initiate multiple connections to a PUT, which
enables it to fuzz the IoT publish/subscribe protocols like MQTT and CoAP 2. MultiFuzz has a new
module desockmulti to feed network messages into the PUT, and is 10x faster than desock (Preeny).
In order to stimulate the state transitions of network protocols, MultiFuzz uses a message mutation
algorithm to mutate inputs at a higher level first. MultiFuzz is coverage-based hence it belongs to the
greybox category.

Table 1. Fuzzer comparisons. “Partial” means some knowledge or work is needed.

Fuzzer Need Spec. Need Coding Support Multiparty Message-aware Taxonomy

Boofuzz (Sulley) [26] Yes Yes Yes Yes blackbox
AFL [3] No No No No greybox

MOPT [14] No No No No greybox
AFLNET [15] Partial Partial No Yes greybox

MultiFuzz (this paper) No No Yes Yes greybox

Specifically, our paper makes the following contributions:

• We propose a multiparty-protocol fuzzer, MultiFuzz, to soundly support the fuzzing of
publish/subscribe protocols. The fuzzer could initiate multiple connections to a PUT, and
has a new seed format for storing all messages of the connections in a single seed input.

• We propose a message mutation algorithm to mutate message sequences in a seed input, to
efficiently stimulate the state transitions of protocols. The mutation algorithm considers the
multiple connections stored in a seed as well.

• We design and implement desockmulti for feeding network messages to a PUT. Previously the
community usually uses the desock module of Preeny together with AFL to fuzz network services,
but desock supports one connection only. We use a new design to support more than one
connection, and further optimize desockmulti to be 10x faster than the widely used desock tool
(Section 5.4) 3.

• We implement MultiFuzz based on AFL, and use MultiFuzz to fuzz two popular projects, Eclipse
Mosquitto (an MQTT broker) [29], and libcoap (a CoAP library) [30]. We reported our found
vulnerabilities to the projects and were acknowledged (Section 5.5). We also show that MultiFuzz
outperforms AFL, and state-of-the-art fuzzers MOPT [14] and AFLNET [15] in finding program

2 Please note that existing greybox fuzzers like AFL [3] and AFLNET [15] could still be used to fuzz the publish/subscribe
protocols (i.e., initiating a single connection to the PUT to simulate one party in the protocols), although they may intrinsically
miss some paths as we illustrated previously. Blackbox fuzzers like Boofuzz (Sulley) [26] do not restart the PUT after each
fuzzing input; therefore, they naturally support multiparty protocols since they may simulate the multiple connections to
the PUT by using multiple fuzzing inputs.

3 We plan to opensource desockmulti after the publication of this paper.
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paths and crashes (e.g., finding program paths 44.6% more than AFLNET, 126.6% more than AFL,
and 125.4% more than MOPT, when fuzzing Eclipse Mosquitto).

The rest of the paper is organized as follows. In Section 2 we review related work. Then in Section
3 we give a brief introduction to MQTT and CoAP. In Section 4 we describe MultiFuzz in detail. We
give experiment results in Section 5, and conclude the paper in Section 6.

2. Related Work

Fuzzing [1,2,6,31] now is a widely used technique to discover vulnerabilities in programs. The
basic idea of fuzzing is to feed different and even abnormal inputs into a PUT, and keep monitoring
its status to check if the program is crashed or misbehaving [1]. Fuzzers could be classified into
three categories: blackbox, greybox and whitebox [2,6]. Blackbox fuzzers [7,8] could only monitor
the input/output of a PUT, and some of them like Peach may know the structure of inputs [8]. Most
traditional fuzzers are in this category [2]. Whitebox fuzzers [9,32] use much more internal information
of a PUT, e.g., through symbolic execution. Greybox fuzzers take the middle way that they collect some
internal information from a PUT. For example, coverage-based fuzzers collect the coverage information
of inputs [2,6]. Greybox fuzzers usually run faster than whitebox fuzzers and utilize more information
than blackbox fuzzers [6], and are good choices if we want higher coverage and discovering “hidden”
bugs [6]. Modern fuzzers like AFL [3], libFuzzer [4] belong to this category. Greybox fuzzing (mainly
coverage-based) has already been widely used in the security industry [3,10]. It is also a hot research
topic; many fuzzers like AFLFast [5], CollAFL [11], Angora [12], QSYM [13], MOPT [14], and IJON [16]
are proposed.

Fuzzing network protocols (i.e., network services/programs) is known to be difficult [15]. This is
because the input is a sequence of messages, but not a single file as in traditional fuzzing, and it needs
a way to feed the input into a PUT. Existing network protocol fuzzing approaches could be divided
into two categories:

• Blackbox network-protocol fuzzing [19]. It includes general protocol fuzzing tools like SPIKE
[33], PROTOS [34], SNOOZE [35], LZFuzz [36], Boofuzz (Sulley) [26], and Peach [8], as well
as tools specially designed for some protocols, like TLS-Attacker [27] for the TLS (Transport
Layer Security) protocol, and MTF [37] for the Modbus protocol. Most of these tools need
users to tell the formats of network messages, and some of them also support users to provide
the transition rules of protocol states [8]. For the general protocol fuzzing tools, users need
to provide such information by scripts [26,33,34] or xml files [8,35]. For the tools specially
designed for some protocols, such information is provided by tool developers. Most of these tools
pretend as clients to feed inputs into the network programs, and some tools like LZFuzz [36]
act as man-in-the-middle (MITM) proxies to modify messages between the client and the server.
Blackbox fuzzing usually requires to write scripts, xml files, or codes following the protocol
specifications, and needs to update them accordingly when the protocols have new versions.
Also, blackbox fuzzing may be more suitable for discovering “shallow” bugs, comparing with
greybox and whitebox fuzzing [6].

• Greybox network-protocol fuzzing [3,10,15]. The general coverage-based fuzzing tools like AFL
[3] and libFuzzer [4] are used to fuzz network protocols as well. Usually users do not need to
know protocol specifications or write any scripts/codes, instead, they prepare (e.g., by recording)
some messages as seed inputs. However, since tools like AFL [3] were used to fuzz programs
using files/stdin/memory buffer as the input source, they need some way to feed fuzzing inputs
into the network programs. There are three known ways now. AFL recommends to use Preeny
(desock) [28], a hook-based tool, to simply redirect stdin to sockets hijacked by the tool [3], AFLNET

[15] sends inputs through ordinary sockets to the network programs, and users could also modify
the program source codes to make the programs read packets directly from memory buffers
other than real network interfaces, like the Google OSS-Fuzz project does to openssl [10]. The



Version June 24, 2023 submitted to Sensors 5 of 19

first two ways may limit the execution speed of fuzzing (comparing with the desockmulti tool
proposed in this paper). The third way may be difficult if the original developers of the programs
do not expect such modification, and is also impossible for closed source programs. A very recent
work AFLNET [15] proposed to combine coverage-based fuzzing with automated state model
inferencing. While the fuzzing generates new message sequences to cover new states, the inferred
state model guides how to do the fuzzing. AFLNET is shown to outperform Boofuzz [26] and AFL
[3] in both code coverage and vulnerability discovery [15]. However, it requires users to write
codes to extract partial information like the response codes from messages.

There are also some recent studies on the fuzzing in IoT domain. IoTFUZZER [38] is a new blackbox
fuzzer which utilizes the mobile apps controlling IoT devices to do protocol fuzzing without protocol
specifications. It indirectly mutates the protocol fields by mutating at data sources (e.g., string constants
and inputs from system APIs). IoTFUZZER needs the mobile apps to fuzz network protocols, and is also
limited to the fuzzing of functionalities related to the mobile apps. FIRM-AFL [39] uses AFL to fuzz
IoT firmware, and uses augmented process emulation to fuzz programs at a higher speed. It mainly
focuses on the fuzzing of ordinary programs in IoT firmware but not the network protocols. In [40],
the authors propose a template-based fuzzing method to fuzz the MQTT protocol. The fuzzer is at the
man-in-the-middle position between the client and the broker, and it selectively mutates the packets
that match the specified types (e.g., PUBLISH messages). It provides templates to users to decide
which fields to mutate, to alleviate the burden of writing codes like in Boofuzz [26]. However, users
still need to know the specification (e.g., packet types) of the protocol. mqtt_fuzz [41] is an open-source
tool designed for fuzzing the MQTT broker server. It could generate most of the MQTT packets for
fuzzing. However, it has not been updated for five years, and does not support MQTT version 5.0
released in 2019 [21], not to mention the CoAP protocol that is also studied in this paper.

3. An Introduction to MQTT and CoAP

MQTT [21] and CoAP [22] are two important application-layer network protocols proposed in IoT
[17–20]. MQTT is a publish/subscribe model protocol, and CoAP supports both the request/reply and
publish/subscribe models [19,42,43]. The publish/subscribe model provides benefits that are crucial
to the IoT network, like loose coupling and great scalability [19]. The two protocols (especially MQTT)
are now widely used in the IoT network [44,45], and are also supported by IoT cloud providers like
Amazon, Microsoft, and Google [24,25].

MQTT [21] is a publish/subscribe messaging transport protocol. It is light weight and has a
simple design. It requires a small code footprint and limited network bandwidth. The protocol runs
over TCP by default. Its clients could be publishers who publish application messages that other
clients might be interested in, or subscribers who request application messages that they are interested
in. Its server acts as an intermediary (broker) between clients which publish application messages and
clients which have made subscriptions (please refer to Figure 1 for its architecture). The information
delivered by MQTT is based on topics, and topics use topic level separator (i.e., “/”) to introduce
structure into the topic name. When the subscribers send subscription, they use topic filters, which
may contain wildcards (i.e., multi-level wildcard “#”, or single-level wildcard “+”) so they could
subscribe to multiple topics. However, when publishers send publish messages, they could only use
topic name (no wildcards included).

In a publish message of MQTT, it could indicate one of the three QoS levels: 0 for at most once
delivery (messages are delivered using the best efforts and message loss can occur), 1 for at least once
delivery (messages are assured to arrive but duplicates can occur), and 2 for exactly once delivery
(messages are assured to arrive exactly once). An MQTT control packet consists of up to three parts
[21]: Fixed Header that presents in all MQTT control packets, Variable Header and Payload that
present in some MQTT control packets. In MQTT v5.0 there are 15 types of MQTT control packets in
total (the AUTH type is newly added in v5.0). We list them in Table 2. We can see that most of these
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packets are in pairs (i.e., a CONTROL command and its ACK), except that for QoS 2, there are 3 ACKs
for ensuring the exactly once delivery.

Table 2. MQTT control packet types [21].

Name Direction of flow Description

CONNECT Client to Server Connection request
CONNACK Server to Client Connect acknowledgment

PUBLISH Client to Server or Server to Client Publish message
PUBACK Client to Server or Server to Client Publish acknowledgment (QoS 1)
PUBREC Client to Server or Server to Client Publish received (QoS 2 delivery part 1)
PUBREL Client to Server or Server to Client Publish release (QoS 2 delivery part 2)

PUBCOMP Client to Server or Server to Client Publish complete (QoS 2 delivery part 3)
SUBSCRIBE Client to Server Subscribe request

SUBACK Server to Client Subscribe acknowledgment
UNSUBSCRIBE Client to Server Unsubscribe request

UNSUBACK Server to Client Unsubscribe acknowledgment
PINGREQ Client to Server PING request
PINGRESP Server to Client PING response

DISCONNECT Client to Server or Server to Client Disconnect notification
AUTH Client to Server or Server to Client Authentication exchange

CoAP [22] is a specialized web transfer protocol for constrained environments. It follows the REST
(Representational State Transfer) architecture of the Web, but is optimized for machine-to-machine
(M2M) applications. It is bound to UDP by default, but could be bound to TCP as well [46]. It can be
logically considered as a two-layer protocol, a CoAP messaging layer used to deal with UDP and the
asynchronous interactions, and a request/response layer for the REST-style methods and response
codes. In the messaging layer CoAP defines four types of messages: Confirmable, Non-confirmable,
Acknowledgement, Reset. For example, marking a message as Confirmable (CON) could provide
reliability to the up-layer. In the request/response layer, CoAP defines and uses GET, PUT, POST, and
DELETE methods like HTTP, and uses a token field to match responses to requests independently
from the underlying messaging layer (which uses a Message ID field for the similar purpose). CoAP
also defines a URI scheme like HTTP, with the prefix “coap://” (or other variants like “coap+tcp://”
for the TCP transport layer case).

The CoAP protocol also supports options, and it uses an Observe option to make CoAP clients
can “observe” resources in a publish/subscribe model [23]. The process could be as follows. A client
sends an extended GET request (the Observe option is set to 0) to the server to register its interest in a
resource. Whenever the state of the resource changes (e.g., by a PUT request from others), the server
notifies each observing client by a response. In the response the token is the same as the token in the
original GET request, and the Observe option is set to a sequence number for reordering detection.

The security of the MQTT and CoAP protocols are very important, since they may be deployed in
hostile environments. Both of them can be secured by either TLS or DTLS (Datagram Transport Layer
Security), depending on whether TCP or UDP is used as the transport layer protocol [21,22]. Mutual
authentication between the client and the server can also be added [21]. Researchers also formally
verified the protocols [47], studied the possible attacks [48], and proposed intrusion detection for them
[49].

4. MultiFuzz

In this section, we give an overview of MultiFuzz first, and describe its techniques in detail in
later subsections.
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4.1. Overview

The basic idea of MultiFuzz is to make the fuzzer support multiple connections when fuzzing a
single seed. Thus, it could simulate the processes of the IoT publish/subscribe protocols (as well as
other multiparty protocols), since during fuzzing, each connection could represent any party in the
protocols. We make necessary changes from the seed input to the execution of a PUT.

We show the architecture of MultiFuzz in Figure 2. It is similar to other coverage-based fuzzers
like AFL [3] (MultiFuzz is implemented based on AFL), and can be divided into four modules as well.
The different parts are highlighted by yellow grids. First, the seed pool stores all initial seed inputs
and newly found interesting inputs. MultiFuzz includes a new seed format to store the information
of multiple connections in a seed. Second, the scheduling module selects seeds from the seed pool
and sends to the mutation module. The scheduling module also later checks with the execution &
monitoring module for any new inputs that have interesting paths, and saves such new inputs into
the seed pool for future use. The scheduling module is unchanged in MultiFuzz. Third, the mutation
module mutates the seed inputs and sends to the execution & monitoring module. The mutation
module can be further divided into three stages in AFL [3]: the deterministic stage (using some
predefined operations like “bitflip” and “arithmetic inc/dec”), the havoc stage (making stacked changes
using previous operations), and the splicing stage (splicing the seed with another randomly selected
seed). The deterministic stage takes a long time and can be skipped by using the “-d” option. MultiFuzz
adds a new message mutation stage before the havoc stage to make message-aware mutation at a
higher level. The execution & monitoring module executes the PUT and feeds inputs into it, and
monitors the results like any crashes or other misbehavior. The module previously may use desock
(Preeny) [28] to hook socket functions in order to feed inputs into the PUT, but MultiFuzz uses a faster
and multi-connection-oriented tool desockmulti instead.

Havoc Stage

Splicing Stage

Deterministic Stage 
(Optional)

ExecutableMessage Mutation

desockmulti

Scheduling

Seed Pool

Mutation

Execution&Monitoring

Seed
Seed

Figure 2. The architecture of MultiFuzz. It has the same architecture as other coverage-based fuzzers
like AFL [3], with the changes highlighted by yellow grids.

4.2. Augmenting Seeds with Multi-Connection Information

We need a new seed format for storing the information of multiple connections. Existing fuzzers
[3,10,15] assume that only a single connection is made to the PUT when fuzzing with a seed, thus,
they could directly store all raw messages in a seed, without any extra information. During fuzzing,
the fuzzers start a connection (either really [15], by hooking [3,28], or virtually [10]), and send all
the messages to the PUT through the connection. In MultiFuzz, however, we need to start multiple
connections for a seed input, so which messages belong to each connection must be determined. We
also want the determination to be definite but not random, because we want the fuzzer to be stable (i.e.,
running the PUT with the same seed multiple times exercising the same path). We once considered
embedding the meta information (like the number of connections and the lengths of messages) in the
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file name of a seed, and storing the real messages in the seed file. However, we do not use the method
because: (i) file names have limited lengths in some file systems (e.g., 255 bytes in ext4), which limit
the number of messages in a seed, (ii) the file names may already have meanings, for example, AFL [3]
embeds id, parent, and mutation operation in the seed file name, (iii) sometimes we may want to fuzz
the meta information like the length of a message, then we need to design extra fuzz operations. We
finally decide to embed the meta information into the seed content as well, and experiment results
confirm that it works well (Section 5).

We design a new seed format for embedding multi-connection information and show it in Figure 3.
We want to keep the seed compact so we use a binary form format. Each seed now contains a HEADER

and one or more MESSAGEs. The HEADER occupies two bytes, and each represents an unsigned value
([0-255]). The first byte is the number of sockets that connect to the PUT’s accepting (i.e., listening)
socket. The second byte is the number of sockets that the PUT connect to others 4. In each MESSAGE,
there is a one-byte unsigned value ([0-255]) representing the index of the socket the message belongs
to (i.e., which socket the message sent through), a two-byte unsigned value ([0-65535], little endian)
representing the length of the message leni, and leni bytes representing the message content. In a
seed, different MESSAGEs could have the same socket index and all of them will be sent through the
socket. We show a seed example in Figure 4. Its accept num is 2, so the fuzzer will initiate two sockets
connecting to the PUT’s accepting socket. The fuzzer will send the four-byte message “00 11 22 33”
through the first socket (socket index = 0), and send the two-byte message “FF EE” through the second
socket (socket index = 1).

1 B 1 B

Accept 
Num

Connect 
Num

2 B1 B

Socket 
Index

Message 
Length len1

len1 B

Message 
Content

Header Message 1 Message 2 

2 B1 B len2 B

Socket 
Index

Message 
Length len2

Message 
Content

...

...

Figure 3. The new seed format.

02 00 00 0400 00 11 22 33 00 0201 FF EE

Figure 4. An example seed in the new format (hex encoding).

4.3. The New Message Mutation Stage

Existing mutation stages are not message-aware and are inefficient in stimulating the state
transitions of protocols. We would like to design a mutation algorithm that does not need users to do
extra work, but still provides good results. Our basic idea is to make full mutation on the message
sequences, and rely on the existing evolution mechanisms in coverage-based fuzzing to approach new
protocol states. For example, suppose currently there are three messages A, B, and C as separated seeds,
there are handleA, handleB, and handleC functions handling these kinds of messages respectively (a
common design pattern), and the PUT enters stateA, stateB, and stateC after handling messages A, B,
and C respectively and only the transitions stateA->stateB, and stateB->stateC are allowed. Then, if
there is a bug that only occurs in stateC (i.e., after processing A, B, and C), it would be nearly unlikely

4 The connect num is not used yet since the servers we fuzzed do not initiate connections to others.
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Algorithm 1 Message mutation algorithm
Input: seed (its connection information already parsed)
Output: output buffer
1: use_stacking = 1 << (1 + UR(MF_STACK_POW2)) // UR is random function
2: while use_stacking > 0 do
3: Choose 1 out of below 5 operations randomly:
4: 1. choose 1 out of the 4 operations randomly: to add/minus the accept num/connect num
5: 2. choose to remove or to add a connection (if to add, further choose to add a single-message

connection or to duplicate a full connection from a random seed)
6: 3. add a random message to, or remove a message from the end of a random connection in the

seed
7: 4. like operation #3 but the change position is random in the connection
8: 5. switch two randomly chosen messages of a connection in the seed
9: use_stacking = use_stacking - 1

to generate seed A‖B‖C (“‖” represents concatenation) with existing mutation stages. However, with
our message mutation algorithm proposed next in this subsection, it would quickly generate input
A‖B based on existing seed A and seed B (and would be saved as a new seed since it has a new path),
also quickly generate the wanted A‖B‖C input (either based on the new seed A‖B, or directly based
on A, B, and C). We also need to consider the special mutation requirements for our multi-connection
scenarios.

We design a new message mutation algorithm, which makes stacking changes like the existing
havoc stage in AFL [3], and show it in Algorithm 1. We add the message mutation stage before each
havoc stage of a seed. We add it here because the deterministic stage is optional and called only once
for a seed, and the splicing stage also reuses the havoc stage to mutate inputs after each splicing. In
the algorithm, we first decide the number of stacking changes with a constant MF_STACK_POW2
(the constant is set to 3 now, so the maximum number of stacking changes is 16). Then each time we
randomly choose one operation out of the five possible ones. The first operation is to add or minus the
numbers (i.e., accept num or connect num) in the header of the seed. The second operation is to add or
remove a whole connection. Note that in the operation (and next operation) we may need messages
for stuffing, and we get them from randomly chosen seeds. We do not limit to the initial seeds because
new types of messages may be discovered during fuzzing. The third operation is a sequential change,
which is to add or remove a message at the end of a connection. The fourth operation is like the third
one, but is to add or remove a message at a random position in the connection. The fifth operation is to
choose a random connection from the seed and switch the positions of two random messages in the
connection.

4.4. desockmulti, A Fast and Multi-Connection-Oriented De-Socketing Tool

Since the seed input of MultiFuzz has a different format and is multi-connection-oriented, we
need a new tool to feed the input into a PUT. The community usually uses the desock module of Preeny
[28] to work with AFL [3] (recommended by AFL [3] for no code modifications needed). desock uses
LD_PRELOAD to hook the socket(), bind(), listen(), and accept() functions. It uses two threads
to synchronize a socketpair to stdin and stdout. However, its design makes it unable to accept multiple
connections for a server (since all new sockets will be duplicated from the socketpair through dup()

calls). Also, the original purpose of Preeny is to interact with binaries locally; therefore, it is not
optimized for fuzzing. For example, desock uses poll() to keep reading from stdin. Then, first it needs
an extra thread to keep calling poll(). Second, it is unnecessary since in fuzzing the whole input is
provided at a time and no poll() calls are needed. We find the performance of desock is indeed limited
in fuzzing (Section 5.4).

We design and implement a new tool, desockmulti. It has the following advantages:
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• desockmulti supports the new seed format.
• desockmulti can initiate multiple connections (i.e., one or more) to a PUT, and it could be a

replacement of desock, which can only initiate one connection.
• desockmulti is optimized for fuzzing, and is 10x faster than desock.

We describe the design of desockmulti in detail. It also uses LD_PRELOAD for hooking the major
socket functions socket(), bind(), listen(), and accept(), and uses UNIX sockets to simulate the
original INET/INET6 sockets. However, the relationships of the sockets in desock and desockmulti are
different, as shown in Figure 5. In desock, only a single socket pair created by the socketpair() system
call is used. One socket of the pair is returned to the PUT (though the socket may be duplicated to
other file descriptors by dup() in the hooked accept() function), and the other socket’s read stream
and write stream are synchronized to stdout and from stdin respectively by two threads. In desockmulti,
multiple socket pairs are created for multiple connections, and one socket of each pair is returned to
the PUT. However, these socket pairs are not created by the socketpair() system call but by ordinary
connect() and accept() calls. This is because multiple accept() calls are the only valid way to make
the PUT process multiple new connections as usual. Also, other hooked socket functions work in more
“real” ways as well. For example, in the hooked bind(), we really bind the socket at an address.

sync_to_front 
thread
poll

stdin stdout

sync_to_back 
thread
poll

socketpair

desock

returned 
socket

returned 
socket 1

returned 
socket 2

Write messages for 
connection 1 and 2

desockmulti

Figure 5. The design of desock and desockmulti.

We improve the performance of desockmulti mainly with the following optimizations: (i) we read
all the content of a seed at a time without using poll(), since no interaction is needed during fuzzing,
(ii) we removed the calls to dup2() which seems to be slow, (iii) we use the abstract socket address 5 in
Linux system to remove the socket’s relation with ordinary filesystem, (iv) and we remove the use of
threads which is unnecessary in the new design, even we are using connect() and accept() to create
socket pairs. We discovered some optimizations (e.g., (ii) and (iv)) through profiling (e.g., strace and
detailed logging). Comparing with desock, desockmulti has more optimizations like (i), (ii), and (iv),
which make it 10x faster in fuzzing (Section 5.4).

4.5. Other Implementation Details

We share some other implementation details here. We implement MultiFuzz based on AFL [3]
and we add an option “-l” for enabling MultiFuzz. Since the seeds are mutated randomly and some
numbers like the socket index may become out of their bounds (i.e., accept num + connect num), we
use the numbers modulo their bounds, instead of treating the seeds as invalid. We add a method
multifuzz_generate() for the message mutation of MultiFuzz, and call it before each of the stacking
havoc mutation. We make desockmulti support the original seed format by an environment variable

5 https://www.man7.org/linux/man-pages/man7/unix.7.html
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USE_RAW_FORMAT. When the variable is set desockmulti behaves like a faster desock. MultiFuzz
uses messages as seed inputs like other coverage-based fuzzers. We use Wireshark 6 to capture the
messages, and develop a Python script to dump messages from the captured pcap files.

5. Evaluation

5.1. Experiment Settings

In order to evaluate MultiFuzz, we select two famous MQTT and CoAP protocol implementations,
Eclipse Mosquitto [29] and libcoap [30]. Eclipse Mosquitto [29] is a message broker that implements
the MQTT protocol versions 5.0 [21], 3.1.1, and 3.1. It also provides mosquitto_pub and mosquitto_sub
command line MQTT clients. We use its latest release version 1.6.10 for fuzzing. We build Mosquitto
by not enabling TLS (make WITH_TLS=no) since we do not want to fuzz the TLS codes. When collecting
fuzzing seeds, we use the mosquitto_sub and mosquitto_pub clients to connect to the local broker
server, and send a subscribe request and a publish request respectively. Then, we use Wireshark to
capture the packets and use a custom Python script to dump messages as we mentioned before. We get
10 seeds for Mosquitto. libcoap [30] is a C-Implementation of CoAP that provides core functionality for
the development of resource-efficient CoAP servers and clients. It supports extensions like resource
observation [23], TCP [46], block-wise transfer, FETCH/PATCH, and No-Response. It provides
coap-client and coap-server and we use coap-server as the PUT. We use its latest release version 4.2.1
for fuzzing. We also build with TLS disabled. Since our desockmulti does not support UDP yet (desock
does not support as well), we use TCP as the transport layer protocol for coap-client and coap-server.
For collecting seeds, we use two coap-client instances to observe and put a resource respectively
(realizing the resource observation). Following the same method, we get 31 seeds for libcoap. We also
build both projects without ASan (Address Sanitizer) [50] enabled for faster fuzzing speeds, and we
later build them with ASan enabled for analyzing crashes and program paths 7.

Similar to AFL [3] (working with desock), MultiFuzz can be run with following
command in the console: LD_PRELOAD=/path/to/desockmulti/desockmulti.so ./afl-fuzz -l 0

-d -i testcase_dir -o findings_dir �- /path/to/program [...params...], where “-l” is for
enabling MultiFuzz as mentioned before, and “0” is for ordinary-initial-seed case (“1” is for
new-format-initial-seed case, i.e., format shown in Figure 3).

We choose AFL [3], and two state-of-the-art fuzzers MOPT [14] and AFLNET [15] to compare with
MultiFuzz. AFL [3] is one of the most famous coverage-based fuzzers, and we use its latest version
2.52b. MOPT is a recently proposed fuzzer that uses Particle Swarm Optimization (PSO) algorithm
to find the optimal probability distribution of mutation operators [14]. AFLNET is a more recently
proposed fuzzer that is based on AFL as well, but uses automated state model inferencing to work
with coverage-based fuzzing [15]. AFLNET needs users to write codes to extract response codes from
messages, and we implement them as required. Basically, we use the higher 4 bits of the first byte of a
MQTT message, and the second byte of a CoAP message, as the response code respectively [21,22].
We run AFLNET with its default settings (i.e., -D 10000 -q 3 -s 3 -K -R). We skip the deterministic
stage during the mutation (which is the default configuration of AFLNET) for all the fuzzers (including
the MOPT fuzzer, which automatically skips the deterministic stage after a while [14]). We use the
desock module of Preeny [28] to work together with AFL and MOPT. We also use the same seeds set for
all fuzzers.

6 https://www.wireshark.org/
7 We do not consider the detection of data race or race condition in this paper, hence we do not use sanitizers like

ThreadSanitizer, or specially design any mechanisms to boost concurrency.
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All the experiments run on a server configured with 2 Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz
processors, 64GB RAM memory, and with 64-bit Ubuntu 20.04 LTS. All the fuzzers run 2 days with a
single fuzzer instance, since it is recommended to run more than 24 hours [31].

5.2. Path and Crash Discovery

The number of discovered program paths is one of the most important indicators of a fuzzer’s
ability, and we show the experiment results in Figure 6 (we show the results of one run and different
runs have similar results). We can see that all fuzzers have a similar trend: finding more paths quickly
at the beginning and reaching a plateau later. An exception is AFLNET in fuzzing Mosquitto, which
has a sudden growth in the middle (because of the big seeds produced at that time, and we will
further analyze it later in this subsection). In both projects, we can see that MultiFuzz discovers paths
much faster than other fuzzers at the beginning. When later most paths have already been found,
the discovery of MultiFuzz slows down and AFLNET may catch up. However, it seems difficult for
AFL and MOPT to find the same paths even fuzzing for a long time. MultiFuzz eventually discovers
2166 paths when fuzzing Mosquitto, which is 44.6% more than AFLNET (1498), 126.6% more than AFL
(956), and is 125.4% more than MOPT (961). In the case of libcoap, the results are similar. MultiFuzz
discovers 1763 paths, which is similar to AFLNET (1769), but is 35.2% more than AFL (1304), and
is 32.9% more than MOPT (1327). We also checked the found paths (i.e., seeds/queue entries) and
confirmed that MultiFuzz does find new message types that are not in the original seed set, e.g., the
PUBCOMP [21] message. The results confirm the hardness of fuzzing network protocols, since even
MOPT could optimize the selection of mutation operators, it cannot discover much more paths than
AFL. The AFLNET fuzzer indeed could discover more paths than AFL, which proves that it utilizes the
message response codes we returned in codes very well. Finally, as a fuzzer that does not need extra
information or codes from users, MultiFuzz discovers much more paths than similar fuzzers AFL and
MOPT.
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Figure 6. The paths discovered by different fuzzers.

We compare the number of crashes found by different fuzzers in Figure 7. Since all the fuzzers
cannot find any crashes in Mosquitto, we only show the results of libcoap. MultiFuzz also finds crashes
more quickly than other fuzzers. MultiFuzz eventually finds 198 unique crashes, which is 70.7% more
than AFL (116), 55.9% more than MOPT (127), and 273.6% more than AFLNET (53). The results indicate
that MultiFuzz can search for bugs more quickly than the fuzzers that are not optimized for the fuzzing
of network protocols. AFLNET does not perform well here, which may be due to it focuses more on
higher level message mutations, but not on the detail program logics.
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Figure 7. Crashes found in libcoap.
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Figure 8. Bitmap density comparisons.

We use the bitmap density to check the code coverage of the fuzzers, and show the results in
Figure 8. Coverage-based fuzzers usually use a fixed-size (e.g., 65536 bytes in AFL [3]) bitmap to store
the coverage of all inputs. Each CFG (Control Flow Graph) edge of the PUT is mapped to a location in
the bitmap (without considering collisions in high density cases [11]). Thus, the bitmap contains the
accumulated edge coverage of all inputs. The bitmap density represents the ratio of locations in the
bitmap that have values (i.e., edges travelled). We can see that MultiFuzz has a slightly higher bitmap
density than AFL and MOPT, which is expected considering our message mutation algorithm.

However, AFLNET has a much higher bitmap density than other fuzzers, which shows that it
can travel more edges. UPDATE: This is because the bytes in the bitmap are overflowed, e.g., over
0xFF (255). The bug is fixed in AFL++. First, this may be due to its ability to intentionally exercise
rarely exercised protocol states. Especially for libcoap, we mainly generate publish/subscribe related
message seeds, which may leave more room for the fuzzers to explore. Second, we further check
the queue entries (i.e., seeds) of AFLNET, and find their sizes are much bigger than other fuzzers (for
Mosquitto, the sizes grow a lot only around the middle of the fuzzing process, but for libcoap, the sizes
grow quickly even at the beginning). Many seed sizes of AFLNET are several hundreds of KB (some
are even over 1MB), and thousands of messages are inside a single seed. For comparison, the seed
sizes of MultiFuzz and other fuzzers are usually less than 1 KB and are tens of KB at most, and only
several or tens of messages are inside a single seed. Bigger size seeds may make the execution slower
(Section 5.4). They also make the execution unstable (i.e., having different paths for the same seed) as
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well. We find the stability ratio (i.e., 1 - the ratio of variable bytes in the bitmap) of AFLNet drops to
about 50% in Mosquitto and about 20% in libcoap (other fuzzers all are over 90%). However, on the
other side, big size seeds may also introduce dynamic message processing behaviors (e.g., different
read/write orders), which seem to be a plausible method to increase code coverage.

5.3. Effects of the Multi-Connection Design and the Message Mutation Algorithm

We know that the multi-connection design and the message mutation algorithm make the fuzzing
of multiparty protocols sound and more efficient, however, it may be unclear that how much they
improve the ability of MultiFuzz. We here make two variations of MultiFuzz: MultiFuzz (SingleConn.,
NoMsgMuta.) and MultiFuzz (NoMsgMuta.). In the first variation, we treat the seeds as in the
original seed format that a seed only includes the messages of a single connection (i.e., by setting
the USE_RAW_FORMAT environment variable when using desockmulti), and we disable the message
mutation algorithm. In the second variation, we use the new seed format and desockmulti as normal,
but disable the message mutation algorithm.

We show the paths discovered by MultiFuzz and its variations in Figure 9. We can see that
MultiFuzz constantly outperforms its two variations, and MultiFuzz (NoMsgMuta.) constantly
outperforms MultiFuzz (SingleConn., NoMsgMuta.). For Mosquitto, MultiFuzz eventually discovers
9.9% more paths than MultiFuzz (NoMsgMuta.), and 29.2% more paths than MultiFuzz (SingleConn.,
NoMsgMuta.). For libcoap, MultiFuzz discovers 9.6% more paths than MultiFuzz (NoMsgMuta.),
and 18.6% more paths than MultiFuzz (SingleConn., NoMsgMuta.). We can clearly see that both the
multi-connection design and the message mutation algorithm improve the path discovery ability of
MultiFuzz, though they add some overhead at runtime.
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Figure 9. The paths discovered when disabling both the multi-connection design and the message
mutation algorithm (MultiFuzz (SingleConn., NoMsgMuta.)), and disabling only the message mutation
algorithm (MultiFuzz (NoMsgMuta.)).

We also show the number of unique crashes found in libcoap by these three types of MultiFuzz
in Figure 10. MultiFuzz only slightly outperforms its two variations, and it eventually discovers
7 more crashes than MultiFuzz (SingleConn., NoMsgMuta.), and 12 more crashes than MultiFuzz
(NoMsgMuta.). It seems that the multi-connection design and the message mutation algorithm do not
improve the crash-finding ability too much.

5.4. The Comparison of Execution Speeds

We pay much attention to the performance of MultiFuzz (including the message mutation
algorithm and the desockmulti module), and we show the execution speeds (executions/second)
of different fuzzers, as well as the speed comparisons between MultiFuzz and others in Figure 11.
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Figure 10. Crashes found in libcoap by MultiFuzz and its variations.

We use tmpfs 8 to store fuzzing outputs for faster execution, and we build the binaries for fuzzing
without ASan enabled as we mentioned before. The average execution speed of MultiFuzz is 1333.9
execs/s for Mosquitto and 1412.4 execs/s for libcoap. In contrast, the average execution speed of AFL
is 128.8 execs/s and 94.6 execs/s respectively, which means MultiFuzz is 10.4x and 14.9x faster than
AFL. MOPT is a bit faster than AFL, but MultiFuzz still is 10.3x and 11.6x faster than it. Since AFL and
MOPT use the desock module of Preeny [28], most of the speed improvement of MultiFuzz is due the
newly designed desockmulti tool. The execution speed of MultiFuzz (SingleConn., NoMsgMuta.) could
be used as a quick reference as using AFL with desockmulti, since only a little initialization work is
extra added in the variation. The average execution speed of MultiFuzz (SingleConn., NoMsgMuta.)
is 1389.9 execs/s for Mosquitto and 983.8 execs/s for libcoap, which is 10.8x and 10.4x faster than AFL
with desock as well. The execution speed of AFLNET is slower than other fuzzers. It is only 9.0 execs/s
for Mosquitto and 22.6 execs/s for libcoap. We think it is mainly due to that AFLNET uses real INET
network socket to connect to a PUT. The INET network socket is known to be much slower than the
UNIX socket. Also, as we mentioned we find AFLNET generates much bigger size seeds (hundreds of
KB) than other fuzzers (< 1KB), which also would slow down the execution speed.
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Figure 11. The execution speeds of different fuzzers, and the comparisons of MultiFuzz to other
fuzzers.

8 https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html
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5.5. Vulnerability Analysis

We manually investigate some of the found paths and crashes, and share the findings below.
Memory leaks in Eclipse Mosquitto. We find two memory leaks in Mosquitto, which could be

repeatedly triggered by malformed requests and may cause DoS (Denial of Service) in the broker
server. Both leaks are caused by the missing of free() calls during error processing. The first leak
is in the handle__subscribe() method, at line 122 of src/handle_subscribe.c. When the broker
processes a malformed MQTT v5.0 subscribe request, it calls return MOSQ_ERR_PROTOCOL directly,
without calling mosquitto__free(sub);mosquitto__free(payload); as in other error processing
cases. The second leak is in the handle__publish() method, at line 112 of src/handle_publish.c.
When it processes a malformed MQTT v5.0 publish request, it calls return rc directly, without calling
mosquitto__free(topic). We reported the leaks to the Eclipse Mosquitto project and the developers
fixed them instantly 9. The fixes should be available in the next version 1.6.11.

assert() failures and a memory leak in libcoap. We find that most of the crashes are
due to the failures of assert() calls, e.g., the failure of assert(pdu->max_size > 0) in the
coap_write_block_opt() function, at line 77 of src/block.c. Such failures usually do not have
impacts on production builds technically, since they should be built with the NDEBUG preprocessor
macro defined, and the assert() method does nothing then. However, they could be reminders to the
developers that unexpected things happen. For example, the memory leak we describe next has an
assertion failure too. The memory leak is in the handle_request() method, at line 2208 of src/net.c.
When the coap-server processes a malformed request in the handle_request() function, the call
to the coap_add_token() method fails. However, only coap_log(LOG_WARNING, "cannot generate

response\r\n") is called in the case, without a coap_delete_pdu(response) call to free the PDU
timely. The memory leak can also be repeatedly triggered by malformed requests so it may cause DoS
as well. We reported the leak to the libcoap project and was acknowledged as well 10.

6. Conclusions

This paper presented a coverage-based fuzzer MultiFuzz, which initiates multiple connections to a
program under test, to soundly support the fuzzing of multiparty protocols like the publish/subscribe
protocols in IoT. MultiFuzz contains a new seed format, a message mutation algorithm, and a new
de-socketing module desockmulti. We used MultiFuzz to fuzz the Eclipse Mosquitto project and
libcoap project, and reported our found vulnerabilities to the developers (all were acknowledged and
fixed). We also showed that MultiFuzz found more paths and crashes, comparing with AFL, and
two state-of-the-art fuzzers, MOPT and AFLNET. We think MultiFuzz is not limited to the fuzzing of
IoT publish/subscribe protocols, and could be used to soundly fuzz other multiparty protocols as
well. In addition, we believe the desockmulti module of MultiFuzz could benefit the community after
open-sourcing, since it is similar to the widely used tool desock (Preeny) but is 10x faster.
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