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Abstract—Many secure localization algorithms have been pro-
posed. In these algorithms, collusion attack is usually considered
as the strongest attack when evaluating their performance. Also,
for ensuring correct localization under the collusion attack, a
necessary number of normal beacons are needed and a lower
bound on this number has been established (assuming the errors
of distance measurements are ignorable). In this paper, we
introduce pollution attack, a more powerful attack which can
succeed even when the number of normal beacons is more than
the lower bound. In this attack, victim node is misled to a special
chosen location, which results in a confusion of compromised
beacon with normal beacon. We propose a new metric to measure
the vulnerability of a normal location reference set to pollution
attack, and develop two algorithms to efficiently compute the
value of the proposed metric. We also present a method to judge
whether the output of the localization algorithm is credible under
pollution attack. Simulation results show that the pollution attack
can succeed with high probability.

I. INTRODUCTION

It is important for sensors to get their correct locations in
hostile environments (e.g., battlefield). Because applications
(e.g., target tracking) and routing protocols (e.g., GPSR [1])
of sensor networks may depend on the locations of nodes.
Fig.1 shows an attack scenario on the battlefield. Here sensors
determine their locations with the help of beacons, and they
will detect tanks passing by and report these events combining
their locations to the base station. The attacker now has
compromised several beacons, and he wants to spoof the three
sensors s1, s2 and s3 to false locations s′1, s′2 and s′3, then the
three sensors will report that they detect the tank on the false
path.

Currently many secure localization algorithms have been
proposed to defeat attackers [2]–[8]; usually these algorithms
are evaluated with the assumption that the general collusion
attack (i.e., all compromised beacons trying to mislead the
victim node to the same false place) is the strongest attack
[3], [4], [6]–[8]. In this paper, we introduce pollution attack,
a more powerful attack to localization. In this attack, the
location references (which is composed of the location of
a beacon and corresponding distance to that beacon) given
by attackers are consistent with some location references
given by normal beacons, then these normal beacons cannot
be used to defeat the attackers anymore (“polluted”). This
attack is essentially a special collusion attack. Simulation
results show that pollution attack breaks the ideal lower bound
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Fig. 1. An attack scenario on the battlefield.

proposed in [8] with high probability (assuming relatively
small measurement error).

Specifically, we make the following contributions in this
paper:

1. We find a more powerful attack to localization algorithms.
The attack can succeed even when the number of normal
beacons is more than the lower bound in [8]. Our analysis
focuses on a class of localization algorithms defined by us, but
our simulations confirm that other kinds of secure localization
algorithms are also vulnerable.

2. We show that the GDOP (geometric dilution of precision)
metric cannot be used to measure the vulnerability of a
location reference set to pollution attack, and we propose a
new metric (dsk), along with two algorithms for computing the
value of the metric. We also present an examination method
for the node to check the credibility of its location estimation.

The rest of the paper is organized as follows. Section II
presents related work. Section III gives the network model and
assumptions. Section IV presents the description of pollution
attack as well as the algorithms for finding the metric dsk and
also the method for judging the credibility of an estimated
location. Section V gives the simulation results of pollution
attacks. Finally Section VI concludes this paper.

II. RELATED WORK

Many algorithms have been proposed to address the at-
tackers in the localization, and we roughly classify them into
two approaches. The first approach is relatively aggressive; it
tries to detect or prohibit malicious nodes with new hardware
or protocols. Sastry et al. [9] proposed an echo protocol for
verifiers to verify the location claims of nodes. Pires et al. [10]
designed protocols to detect malicious message transmissions
violating their positions. Lazos et al. [2] presented a new
algorithm called SeRLoc using sector antennas. Liu et al. [11]
proposed techniques to detect and revoke malicious beacons.



Čapkun et al. [5] proposed protocols to bound the distance
between nodes. Also in [12], Čapkun et al. proposed to use
hidden and mobile stations to detect location spoofing. Zeng
et al. proposed to use beacons to detect wormholes in [13].

Another approach is to filter or to tolerate the false informa-
tion induced by attackers. This approach is more conservative
since it usually only needs to run novel robust algorithms
on the node; no new hardware or special nodes are needed.
Our pollution attack is mainly against the algorithms in
this approach, but the idea of pollution can definitely be
used to attack algorithms in the previous approach. Li et
al. [4] used Least Median of Squares (LMS) to tolerate the
outliers in location references. Liu et al. [3] proposed an-
other attack-resistant Minimum Mean Square Estimation(AR-
MMSE) method. Misra et al. [6] generalized the secure
localization problem to a second order cone problem (SOCP).
Kiyavash et al. [7] proposed a fast algorithm to find consistent
location references. Zhong et al. [8] also gave two algorithms
to find the location of a node when there are less than n−3

2
malicious beacons (n is the total number of beacons). We
note here that almost all these algorithms assume the general
collusion attack is the strongest attack.

III. NETWORK MODEL AND ASSUMPTIONS

We consider a simple model that only one sensor node
M wants to obtain its position. The sensor node can hear
n beacon nodes which know their locations. Both the sensor
node and beacon nodes may be static or mobile. k beacon
nodes are compromised (i.e., the number of normal beacon
nodes is g = n − k). The information that M gets from
beacons includes the locations of beacons and the distances
from M to the beacons, which forms a location reference set:
{<loci, di> |1≤ i≤n} (loci is the location of Bi beacon and
di is the distance between M and Bi). Location references
may be obtained from 1-hop beacons by receiving the location
of beacon and measuring the distance between them (e.g.,
through measuring received signal strength indicator (RSSI)
[14] or time difference of arrival (TDoA) [15]), also may be
obtained from beacons multihop away (e.g., through DV-based
methods in [16]).

We assume that the difference between the measured dis-
tance and the true distance (i.e., measurement error) is no
more than ε, which is the same to the assumption in [3],
[8] (In reality, the error may vary from 1%-5% of the real
distance when using TDoA [17], and 10%-50% of the real
distance when using RSSI [18]). We assume k beacons are
compromised by one attacker for simplifying the discussion,
since multiple colluding attackers have the same effect as a
single attacker. Also we assume the attacker may change any
fields of these k location references obtained by the sensor.
This can be done by declaring false locations or distorting
distance measurements [3]. In the following sections, we will
first assume the attacker know the location references that the
sensor get from normal beacons. Then we will show in Section
V Fig.6(d) that in fact only the real locations of the sensor node
and other normal beacons are needed.

IV. POLLUTION ATTACK TO LOCALIZATION

Although pollution attack can distort the result of different
localization algorithms, different attack strategies are needed
for efficient pollution. In particular, we first identify a class of
algorithms for the description of our pollution attack strategy
in this paper. Then we analyze how to judge the vulnerability
of a location reference set when using this kind of algorithm,
and how to examine the location estimation.

A. Class of Resilient Localization Algorithms

Before defining this algorithm class, we describe some
terminology. The cover ring Ri of a location reference <
loci, di > (by Bi) is the area where each point X satisfies
di−ε ≤ dist(loci, X) ≤ di+ε. We call a location reference (or
the corresponding beacon) covers some location if the location
is in the cover ring of the location reference.

Definition 1: We define the class of resilient localization
algorithms as algorithms which always output a location that
is maximally covered by location references.

This definition is reasonable since we usually trust the
one has the most supporters. In fact, existing algorithms that
belong to resilient localization algorithm include grid-voting
based localization in [3] and algorithms in [8]. Specially, when
there are multiple locations (i.e., an area) that have the same
supporter, a random location among them can be selected
as in [8], but generally the centroid of all these locations is
selected [2], [3], [6]. In following sections, we will describe
our pollution attack to this class of algorithms, however we
will show in Section V that the pollution attack is also able
to subvert the results of other types of algorithms.

B. Pollution Attack Description

We here describe the pollution attack to the algorithm class
defined in the previous subsection. Recall that the general
collusion attack is that all the compromised beacons try to
mislead the node to a location which is different from the
node’s real location [3], [4]. Now the pollution attack is
different in that all the compromised beacons try to mislead
the node to a special location. The location should be not only
different from the node’s real location but also has enough
normal beacons (denoted by nc) covering it. The value of
nc relies on the number of compromised beacons k: if the
pollution attack wants to definitely (recall that in the previous
subsection some algorithms may randomly select an candidate
location) succeed, then nc ≥ n−2k+1 should be satisfied, for
the number of beacons covering the real location (i.e., n− k)
should be less than the number of beacons covering the false
location (i.e., nc + k).

Take Fig.2 for example. The real location of the node is
M . If beacon B5 doesn’t exist yet, there are only 4 beacons.
The compromised beacon B4 can launch a pollution attack by
covering a false location M ′ in the shadow area. The attack
will definitely success since M ′ has more beacons covering it
(4 vs. 3).

Pollution attack can succeed even the lower bound for
the number of normal beacons in [8] is satisfied. The lower
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Fig. 2. Pollution attack example. Here B1, B2 B3 and B5 are normal
beacons, while B4 is compromised beacon.

bound can be simply stated as: the number of normal beacons
should be more than k + 2 (k is the number of compromised
beacons)1. However in Fig.2, when another normal beacon B5

exists, the lower bound is satisfied. But both M and M ′ have
four beacons covering them, and if the resilient localization
algorithm selects a random location as in [8], the attacker still
may succeed. The lower bound failed because it is derived
with the ideal assumption that measurement error is ignorably
small; however, we will show by simulations in Section V that
pollution sometimes may succeed with high probability even
when measurement error is practically small value.

We next give a theorem on the maximum location error
when the pollution attack succeeds:

Theorem 1: The maximum location error of the resilient lo-
calization algorithm: (i)when k ≥ g, it’s infinite, (ii) when k <
g, it’s 2(dmax + ε), where dmax = max{d1, d2, ..., di, ..., dg}.

Proof: (sketch) In the first case, the attacker can certainly
mislead the node to any location, so the location error may be
infinite. In the second case, the attacker must choose a false
location covered by at least one normal location reference,
then the false location must be within 2(dmax + ε) distance to
the true location of the node.

C. Why Not Use GDOP and the New Metric

The theorem 1 in the previous section only gives the
maximum error bounds in the general case, but the success
of pollution attack depends on the layout of beacons and node
(also the measurement error). So in this section, we want to
find a metric to measure the vulnerability of a given location
reference set to pollution attack. A related metric for measur-
ing the (geometric) quality of received location information is
GDOP in the GPS domain. It can be approximately computed
by [19]:

GDOP =
√

tr(H[1]T H[1]),H[1] =
∂ρ

∂x

∣∣∣∣
Xnom,Ynom,Znom

(1)

where (Xnom,Ynom,Znom) is a nominal solution for the loca-
tion (X ,Y ,Z), and ρ is a vector and is composed of:

ρi =
√

(xi −X)2 + (yi − Y )2 + (zi − Z)2 (2)

with the (xi, yi, zi) is the location of the i satellite.

1The authors are aware of another lower bound in [6] which is essentially
proved in the similar way
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Fig. 3. Illustration of GDOP and pollution opportunity.

However we find that GDOP fails to meet our demand.
We illustrate this by an example in 2D. Three satellites
A, B and C are placed linearly, and their coordinates are
(1, 2), (2, 2) and (3, 2) respectively. The GDOP values of
each location are shown in Fig.3(a). Then in Fig.3(b) we plot
the three beacon nodes with the same coordinates, and the
sensor M placed at (2, 3) will get three location references
so we plot corresponding cover rings. Now we can see that
attacker controlling one beacon can cover a location in M ′ and
then succeed in pollution, so the location M indicates high
pollution threat. But the GDOP value of M in Fig.3(a) is very
small. Also the induced location error by pollution attack will
be bigger when M is more distant from the beacons; however
this contradicts the GDOP distribution. Finally, GDOP doesn’t
use the measurement error ε, which in fact can impact the
pollution opportunity (the area of M ′).

We hence define a new metric to characterize the vulnera-
bility of a location reference set to pollution attacks:

Definition 2: We define dsk as the maximum location error
the attacker controlling k beacons can definitely achieve:
max{dist(P ′,M)} = dsk, where P ′ is any location success-
fully misled by the attacker and M is the real location. The
location corresponding to dsk is the optimal pollution location.

The definition is given from the aspect of the location
distortion strength by the pollution attack. We note that some
additional directional constraints such as “misleading the loca-
tion of the node to the north” can be added to the metric. Also,
a minimum distortion threshold dsL usually is useful (similar
to minimum strength of attack in [4]), because both the sensor
and attacker may not care about pollution unless dsk > dsL.
Next we present a theorem on the optimal pollution location.

Theorem 2: The optimal pollution location is on the edge
of a cover ring, and has at least g− k + 1 location references
covering it.

Proof: (sketch) Firstly, any non-boundary points within
cover rings cannot be the optimal pollution location, other-
wise we can certainly find another qualified point in its δ
neighborhood (δ is an arbitrary small value) which has bigger
location error. So the optimal pollution location must be on
the edge of a cover ring. Secondly, as mentioned in Section
IV-B, the number of needed normal beacons for covering the
false location is at least nc = n− 2k + 1 = g − k + 1.



D. Algorithms for Finding the Value of dsk

We have defined a metric dsk for the vulnerability of a given
normal location reference, then how to compute the value of
dsk efficiently is a problem now. We present two algorithms
here. The first algorithm is grid search algorithm, which is
used as the baseline algorithm. It contains the following steps:
(1) find a minimum rectangle covering all the g location
references, (2) then divide the rectangle into small grids (cells),
each grid maintains a counter initialized to 0, (3) all the cover
rings of the g location references add the counter of a grid
by 1 if they cover or intersect with the grid, (4) select cells
satisfying: its counter is no less than g − k + 1 and it is
intersecting or out of a circle centering at the real location
of node (M ) with radius dsL, and then sort these cells in
descending order by their distances to M , (5) check each
cell sequentially that: if the cell size is more than a value
(i.e., the threshold of accuracy), then recursively call step 2 -
step 5 to divide the cell further; otherwise randomly sample
some points, if find a point has more than g − k + 1 location
references covering it, then output its distance to M as dsk

and stop the algorithm. The grid search method is also used
in [3]; however the method here may have more iterations in
step 5 because now it’s more often that candidate cells don’t
contain a valid point eventually.

We propose another heuristic algorithm, which is to use
points of intersection of cover rings as the pollution loca-
tion candidates. Because we know that functions reach their
extreme values in the stationary point, or point where the
derivative is not defined. Also, if we assume k ≤ g − 1, then
nc ≥ 2, which means the pollution location must lie in an
intersection area of cover rings. So points of intersection are
good candidates for optimal pollution location. The details of
our heuristic algorithm are shown in Algorithm 1. The worst-
case time complexity of this algorithm is O(g3− g2), and it’s
very fast in practice. Also, the algorithm can be speeded up
when the memory is not a critical resource: we can sort the
points of intersection by their distances to M before line 3 of
the algorithm, and then we can break the loop immediately
after line 7.

Algorithm 1 Find the value of dsk by points of intersection.
Input: location of node M , g normal location references, compro-

mised beacon number k, measurement error ε and the minimum
distortion threshold dsL.

1: dsk = −1.
2: Compute points of intersection of all the cover rings Ri.
3: for each point of intersection I do
4: if dist(I, M) > dsL then
5: if the number of location reference covering I is no less

than g − k + 1 then
6: if dist(I, M) > dsk then
7: dsk = dist(I, M).
8: end if
9: end if

10: end if
11: end for

Proposition 1: The error of the dsk value computed by
Algorithm 1 is no more than (2−√2)(d + ε) when all the g
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Fig. 4. Pollution results for uniform measurement error.

normal location references have equal di = d, and is no more
than 2dmax when dis are not equal.

The proof is given in Appendix A. In our simulation the
dsk value computed by Algorithm 1 is very approximate to
the real value.

E. Defending Against Pollution Attacks

In previous subsections we try to measure the vulnerability
of g normal location references to the pollution attack. Here
we consider the condition that the attack may has happened
and the node wants to defend itself. Apparently the resilient
localization algorithms cannot be used. Other secure localiza-
tion algorithms may tolerate partial pollution attacks (we will
show this in Section V), because the current pollution strategy
(i.e., selecting optimal pollution location as the false location)
doesn’t consider other statistical properties such as the square
errors. But if not follow the current strategy, pollution attack
sometimes can be essentially hard to defend against, e.g., in
Fig.2 the false locations M ′ has nearly the same properties
with M . In fact, no matter what pollution strategy the attacker
select, if the node is using a resilient localization algorithm,
there is an examination method for the node to check the
credibility of output location. The node can restrict itself to
update its location only when the output location is definitely
correct.

The problem is formally stated as follows: a node receives
n location references, the output location of its resilient
localization algorithm is P , and it knows that there are at most
k compromised beacons, then, is the output location correct
(or has less than dsL deviation) under a pollution attack? The
examination method is essentially according to the required
nc number in Section IV-B: (1) find the number of location
references covering P , denoted by a, (2) execute Algorithm
2 (which is a similar algorithm to Algorithm 1) to find the
minimum required number of compromised beacons (denoted
by m) and corresponding pollution location (denoted by P ′),
(3) find the number of location references covering P and P ′

at the same time (denoted by c), (4) if c + k < a holds, then
the location P is definitely correct, else the location P may
be polluted and incorrect.

V. SIMULATION RESULTS

This section presents the simulation results of the pollution
attack. In all simulations, 15 normal beacon nodes and k
(1 ≤ k ≤ 14) compromised beacon nodes are randomly
deployed in a circular area with radius=250m. The non-beacon
node is located at the center of the circle (i.e., M ). We
assume the transmission range is 250m then the non-beacon



Algorithm 2 Find the minimum m and corresponding P ′.
Input: output location P of the resilient localization algorithm,

the number of location references covering P as a, n location
references, measurement error ε and the minimum distortion
threshold dsL.

1: m = BIG INT , P ′ ← null. // Initialize
2: Compute points of intersection of all the cover rings Ri.
3: for each point of intersection I do
4: if dist(I, P ) > dsL then
5: let x be the number of location reference covering I .
6: if a−x+1 < m then // I needs less compromised beacons
7: m = a− x + 1, P ′ ← I .
8: else if a− x + 1 = m then
9: if dist(I, P ) > dist(P ′, P ) then

10: P ′ ← I .
11: end if
12: end if
13: end if
14: end for
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Fig. 5. Pollution results for normal measurement error.

node can always receive beacon signals from all the beacons.
The minimum distortion threshold dsL is set to 100m. The
pollution attack process contains 3 steps: first we find dsk

and corresponding optimal pollution location P ′ by algorithms
in Section IV-D, then we use a simple method to generate
k malicious location references for the false location P ′:
generate the locations of compromised beacons along the line
P ′M (for avoiding pollution to other locations unconsciously),
at last, we feed the 15 + k location references to the grid-
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Fig. 6. four simulations still about resilient localization algorithms.
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Fig. 7. Pollution attack to non-resilient localization algorithms.

voting based algorithm [3] (a resilient localization algorithms)
to judge whether the pollution is successful. The performance
metrics in our simulation are: (1) the successful pollution
ratio (SPR), which is number of successful pollution rounds
divided by number of total rounds, (2) the average location
error (ALE), which is the average location error when the
pollution is successful. For convenience, we call the grid
search algorithm as gridser algorithm, and Algorithm 1 as
intersec algorithm.

First, we simulate the pollution attack with two different
types of measurement errors: uniform distribution over [−ε, ε]
and normal distribution with mean 0 and standard deviation
ε
2

2. In both case, we run the two algorithms (gridser and
intersec) with ε from 10m to 50m in steps of 20m, and k
from 1 to 14 in steps of 1 (all with 100 runs). Fig.4 and Fig.5
show the results of them respectively. We can see that both
the SPR and the ALE of intersec algorithm are quite similar
to the results of gridser algorithm (lines are overlapped). The
SPR can be as high as 100%, e.g., when measurement error is
uniformly distributed, ε is a relatively small value 10m, k =
12. Corresponding ALE is up to 260m. Also, it isn’t surprising
to see that the bigger ε is, the more powerful pollution attack
is. Finally the results show that the lower bound in [8] is not
applicable, because according to the lower bound, there should
be no successful attack when k ≤ 12.

Then we give additional five simulations to study the
pollution attack further. In the first simulation, dsL is set to
a bigger value 150m, with normally distributed measurement
error and ε=30m. In Fig.6(a) we can see that both the SPR
and ALE degrade a little comparing with Fig.5(a). In the
second simulation, the execution time of gridser algorithm
and intersec algorithm is compared. From Fig.6(b) we can see
that the simulation time of intersec algorithm is very steady,
however, the simulation time of gridser algorithm become
much more than the intersec algorithm when there are 8-
12 compromised beacons. The reason is that in step 5 (in
Section IV-D) the algorithm spends much time on dividing
and searching grids which eventual have no qualified point.
Since intersec algorithm has the similar pollution ability but
is more efficient than gridser algorithm, we will only use it
in following simulations.

In the third simulation, we relax the lower bound of nc by

2Similar to [8], we modify the distribution to make sure the probability
density outside [−ε, ε] becomes 0 (i.e., we discard the samples outside
[−ε, ε]), then the values of measurement errors are always within [−ε, ε].



1 to n − 2k. Fig.6(c) shows that as expected both the SPR
and ALE tagged with intersecE are slightly higher. In the
fourth simulation, we assume that the attacker doesn’t know
the normal location references, and it guesses that the distances
in the location references are the same as the actual distances
from the sensor to normal beacons. Results are shown in
Fig.6(d) (uniform distribution). We can see that both SPR and
ALE have only very little degradation comparing with results
in Fig.4. In the last simulation, we study pollution attack to
other kinds of secure localization algorithms, e.g., LMS [4]
and AR-MMSE [3] (normal distribution and ε=30m). Since
these algorithms are related to square errors so we slightly
modify our pollution strategy: we shrink the ε in the intersec
algorithm to be not equal to 30m (we use ε1 to represent it).
The results are shown in Fig.7. We can see that both LMS [4]
and AR-MMSE [3] are vulnerable to the pollution attack, and
a smaller ε1 makes the pollution attack harder to detect.

VI. CONCLUSION

In this paper we have described the new attack called
pollution attack. We mainly focus on pollution to the resilient
localization algorithms defined by us. As the ability of attack
is related to concrete location reference set, so we propose a
metric dsk to measure the vulnerability of a given normal loca-
tion reference set. Then we give two algorithms for finding the
value of dsk. We also present a method to check the credibility
of the output location. Finally our simulation shows that the
pollution attack is very powerful and breaks an existing lower
bound with high probability. Base on the results we argue that
researchers need to pay attention to the pollution attack when
designing and evaluating secure localization algorithms. In the
future we plan to theoretically analyze the success probability
of the attack.
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APPENDIX A
Proof of Proposition 1:
Since we assume that nc ≥ 2, so the optimal pollution

location must lie in an intersection area (denoted by S) of at
least 2 cover rings. Then it becomes a problem of finding the
maximum distance between any points of intersection at the
boundary of S and any points in S. Because more intersecting
cover rings will make S smaller, we here consider the case of
2 intersecting cover rings to give an upper bound. We use E
to denote the error of dsk.

xM

P1

P2
α

(a) Case of equal dis.

M P1 P2

(b) Case of unequal dis.

Fig. 8. Demonstrations.

(1) When all the dis are equal, Fig.8(a) shows the case
that the intersection area of two cover rings is the biggest.
We have E = MP2 − MP1. We need to find the max-
imum of E when x ∈ [0, 2ε]. Following the law of
cosines, we have MP1 =

√
2(d + ε)2 − 2(d + ε)cos(α) =√

2(d + ε)2 − (d + ε)x. So E = (2(d + ε) − x) − MP1 =
2d + 2ε − x +

√
2(d + ε)2 − (d + ε)x. Then ∂E

∂x = −1 −
1

2
√

2−x/(d+ε)
, which is away less than 0 when x ∈ [0, 2ε]. So

E reaches its maximum when x = 0, E = (2−√2)(d + ε).
(2) When dis is not equal, E reaches its maximum when

a cover ring (di=dmax) intersects with another a little smaller
ring, as shown in Fig.8(b). Then E = MP2 − MP1 =
2(dmax + ε)− 2ε = 2dmax.

Thus the proposition is proved.


