Hindawi

Security and Communication Networks
Volume 2022, Article ID 1505842, 17 pages
https://doi.org/10.1155/2022/1505842

Research Article

WILEY | Q@) Hindawi

GSA-Fuzz: Optimize Seed Mutation with Gravitational

Search Algorithm

Mingmin Lin,' Yingpei Zeng ®,"” Ting Wu,"* Qiuhua Wang,' Linan Fang,'

and Shanqing Guo*

ISchool of Cyberspace, Hangzhou Dianzi University, Hangzhou 310000, China

2State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210000, China
3Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China

*School of Cyber Science and Technology, Shandong University, Jinan 250000, China

Correspondence should be addressed to Yingpei Zeng; yzeng@hdu.edu.cn

Received 28 September 2021; Revised 17 February 2022; Accepted 26 June 2022; Published 15 July 2022

Academic Editor: Zhiyuan Tan

Copyright © 2022 Mingmin Lin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mutation-based fuzzing is currently one of the most effective techniques to discover software vulnerabilities. It relies on mutation
strategies to generate interesting seeds. As a state-of-the-art mutation-based fuzzer, AFL follows a mutation strategy with high
randomization, which uses randomly selected mutation operators to mutate seeds at random offsets. Its strategy may ignore some
efficient mutation operators and mutation positions. Therefore, in this paper, we propose a solution named GSA-Fuzz to improve
the efficiency of seed mutation strategy with the gravitational search algorithm (GSA). GSA-Fuzz uses GSA to learn the optimal
selection probability distributions of operators and mutation positions and designs a position-sensitive strategy to guide seed
mutation with learned distributions. Besides, GSA-Fuzz also provides a flip mode to calculate the efficiencies of the deterministic
stage and indeterministic stage and implements switching between the two stages to further improve the efficiency of seed
mutation. We compare GSA-Fuzz with the state-of-the-art fuzzers AFL, MOPT-AFL, and EcoFuzz on 10 open-source programs.
GSA-Fuzz finds 145% more paths than AFL, 66% more paths than EcoFuzz, and 43% more paths than MOPT-AFL. In addition,

GSA-Fuzz also outperforms other fuzzers in bug detection and line coverage.

1. Introduction

Mutation-based fuzzing is an efficient way to discover
software vulnerabilities. Its efficiency highly depends on seed
mutation strategies. Improving the efficiency is important;
since the more interesting seeds it generates, the more likely
it triggers bugs. In recent years, a lot of effort has been done
to promote the efficiency of fuzzing, including improving
code coverage [1-4], strengthening seed selection strategy
[5-8], and combining it with other techniques [9-12].
High randomization is one of the factors that affects the
efficiency of fuzzing. There are many ways to reduce ran-
domization, and a good way is to use optimization algo-
rithms to solve the problem spontaneously. Optimization
algorithms [13, 14] can be used in various research fields,
and some recent researches have made breakthroughs

[15-18]. What they have in common is that they all use the
knowledge of optimization algorithms or machine learning
to optimize their problems. Thus, optimization theories have
good implications for reducing the randomization of
fuzzing.

Popular mutation-based fuzzer AFL [19] follows such a
mutation strategy to generate seeds, which is to use ran-
domly selected operators to mutate seeds at their random
positions. It always ignores efficient operators and mutation
positions in seed mutation. Therefore, some solutions are
proposed. In order to improve the selection of mutation
operators, MOPT [20] utilizes the PSO (particle swarm
optimization) to learn the optimal probability distribution of
operators and uses learned distribution to guide the selection
of operators. MOPT’s particle swarm model uses multiple
particles in each swarm to learn operator efficiencies, and


mailto:yzeng@hdu.edu.cn
https://orcid.org/0000-0002-6294-4889
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1505842

each particle represents the selection probability of an op-
erator. Therefore, MOPT can be viewed as a process of
searching for the optimal solution in a high-dimensional
space. However, it has been proven that PSO is inefficient in
exploring the optimal solution in a high-dimensional search
space, and its accuracy and efficiency are lower than some
similar algorithms such as GSA (gravitational search algo-
rithm) [21]. Therefore, it may help AFL find efficient op-
erators more quickly by using a more suitable optimization
algorithm. In order to reduce the effect of randomness on
mutation positions, there are also some methods to improve
the efficiency of seed mutation by studying mutation po-
sitions. For instance, FairFuzz [4] uses a small number of
mutation experiments to find the key mutation positions of
seeds and keeps them from being mutated, which reduces
the fuzzing of high-frequency paths. But the identified
mutation positions are only a small part of each seed, and the
fuzzer may ignore the effects of other mutation positions.
Godefroid et al. [22] consider PDF documents as input
sequences and use the recurrent neural network (RNN) to
train a large number of input sequences to get a model that
can generate new PDF documents with high coverage.
However, the RNN scheme is just a specific solution for PDF
documents that may not apply to other kinds of inputs.

In this paper, we propose a comprehensive solution
GSA-Fuzz to improve the random scheduling scheme of
mutation operators and mutation positions. It regards the
selection of operators and mutation positions as GSA op-
timization problems. Since GSA has fast optimization speed
and outstanding effect of convergence, it can quickly find
suitable selection probability distributions of mutation op-
erators and mutation positions, and continuously optimize
them in fuzzing. Besides, GSA-Fuzz also applies a position-
sensitive strategy to systematically guide the seed mutation
and thus improves the fuzzing performance significantly.

When scheduling the selection of operators, supposing
there is an #n-dimensional space, GSA-Fuzz uses some
particles to represent the probability distributions of oper-
ators. Each particle has a coordinate (xi,x,,x5,...,x,),
which represents the particle’s position in search space. Its
value of each dimension x; (0<i<d) represents the
probability of the i-th operator. Particles keep moving to find
the optimal position in space, and GSA-Fuzz also provides a
flip mode to accelerate this exploration process. Also, in
scheduling the selection of mutation positions, GSA-Fuzz
divides each seed into multiple segments and every segment
has a mutation probability. The fuzzer regards mutation
probabilities of segments as particles to learn segment ef-
ficiencies. When GSA-Fuzz finishes optimization, the more
efficient particle will get a greater mutation probability, and
the fuzzer would mutate the corresponding segment more
frequently in later fuzzing.

In order to efficiently apply the learned distribution to
the seed mutation, GSA-Fuzz provides a position-sensitive
strategy. When executing the strategy, GSA-Fuzz first
chooses a mutation position according to the learned
mutation probabilities of segments and then uses suitable
selection probability distribution of operators to mutate
the seed.

Security and Communication Networks

GSA-Fuzz is implemented on top of AFL. In order to test
its performance, we evaluate it on ten open-source programs
and compare it with three state-of-the-art fuzzers AFL [19],
MOPT-AFL [20], and EcoFuzz [23]. The results show that
GSA-Fuzz triggers 145% more paths than AFL, 66% more
paths than EcoFuzz, and 43% more paths than MOPT-AFL.
Also, GSA-Fuzz finds 275% more crashes than AFL, 150%
more crashes than EcoFuzz, and 114% more crashes than
MOPT-AFL. In addition, the line coverage of GSA-Fuzz is
almost 20% higher than the other three fuzzers in the best case.

In summary, we have made the following contributions
to this paper:

(i) We applied GSA to learn the selection probability
distributions of mutation operators and mutation
positions and designed a new position-sensitive
strategy to guide seed mutation.

(ii) We designed a flip mode to calculate the efficiencies
of the deterministic stage and indeterministic stage
and used them to guide the switching between these
two stages.

(iii) We implemented a prototype of GSA-Fuzz and used
it to fuzz 10 open-source programs and compared it
with three state-of-the-art fuzzers. The results
showed that GSA-Fuzz outperformed other fuzzers.
We published our code at https://github.com/lmm-
1997/GSAFuzz.

2. Background

2.1. American Fuzzy Lop. AFL [19] is a popular mutation-
based fuzzer that uses a new type of instrumentation and
genetic algorithm to trigger program vulnerabilities. It is the
ancestor of many mutation-based fuzzers such as LibFuzzer
[24], VUzzer [25], and BFF [26]. As shown in Table 1, it has a
set of mutation operators that define how to mutate a seed.
When AFL works, it applies these operators to mutate the
seed and uses the mutated seed as an input to execute the
program under test. In terms of mutating seeds, it has two
mutation stages, and their transformation is shown in
Figure 1.

2.1.1. Deterministic. In this stage, mutation operators are
selected to mutate the seed in a fixed order. AFL determines
the mutation times of the seed according to its length, and
this stage usually needs much execution time. Besides, the
deterministic stage is only enabled once for a seed.

2.1.2. Indeterministic. This stage consists of the havoc step
and splice step. When the deterministic stage is skipped or is
over, AFL will run the havoc step and start to select mutation
operators to mutate the seed at random offsets until it cannot
generate a new interesting seed or the assigned mutation
times of the seed are over. Once there is no interesting seed
generated in the havoc step, AFL will start the splice step,
where it randomly breaks two seeds from the seed pool and
splices them into a new seed. Then the fuzzer returns to the
havoc step and mutates the spliced seed. For determining the


https://github.com/lmm-1997/GSAFuzz
https://github.com/lmm-1997/GSAFuzz

Security and Communication Networks

TaBLE 1: Defined mutation operators in AFL.

Name Type

Function

bitflip1/1
bitflip2/1
bitflip4/1
bitflip8/8
bitflip16/8
bitflip32/8
arith8/8
arith16/8
arith32/8
interest8/8
interest16/8
interest32/8

BITFLIP

ARITHMETIC INC/
DEC

INTERESTING
VALUES

DICTIONARY STUFF
extras(over)

add to byte
subtract from byte
delete bytes

RANDOMLY BYTE
DELETE BYTES
CLONE BYTES
OVERWRITE BYTES

clone bytes

overwrite bytes

Randomly flip some bits of a seed

Perform integer addition or subtraction mutation on some bytes
of the seed

Replace some bytes in the seed with interesting values

user_extras(over), user_extras(insert) auto Replace tokens provided by the user or detected by the system into

the seed
Randomly select a byte and add or subtract a value

Randomly delete some bytes
Randomly clone some bytes and insert them into the seed
randomly clone some bytes
And overwrite them into the seed

deterministic

Mutation operators are selected to
mutate seed in order, and this stage
is only execute once

Deterministic
stage is over

—

The two seeds are
successfully spliced

indeterministic

Havoc: randomly [Splice: randomly
select operators | select two seeds
to mutate seeds for splicing

No new paths and crashes were found
after testing all seeds once

FIGURE 1: Two main mutation stages in AFL.

mutation times of the seed, it gives a score to the seed
according to its execution speed, execution depth, consumed
time of generating seeds, and so on. The mutation times of
the seed are determined by its score. The higher score a seed
gets, the more mutation times it gains.

2.2. Mutation Positions of a Seed Affect Operator Efficiencies.
In general, a seed usually has its key part that can generate
a large number of new interesting seeds. For example, the
head of a protocol seed is one of its core parts and correct
mutation at this part may trigger lots of paths for pro-
grams such as tcpdump because modifying the head of a
protocol can easily change it into another protocol. We

use AFL to count the discovered paths in different seg-
ments of seeds and evaluate the efficiencies of some op-
erators in different segments. In our testing, we divide
each seed into 5 segments to distinguish different mu-
tation positions. As shown in Figure 2, AFL discovers a
different number of paths in segments when it fuzzes sass.
For example, segment 1 finds more than 2,500 paths, while
segment 5 finds less than 1,500 paths, and the other 3
segments each find nearly 2,000 paths. It indicates that
mutation positions of seeds affect the efficiency of fuzzing.
Besides, we also study the efficiencies of operators in
different segments. Figure 3 shows the discrepancy among
operators’ contributions in different segments. Without
considering operator extra overwrite, operator clone bytes



sass
4000

3500

3000

2500

2000

paths

1500

1000

500

0

segment 1 segment2 segment3 segment4 segment5

mutation positions

F1GURE 2: The discovered paths of each segment when AFL fuzzes sass.

sass
1200

1000

600

545
500 189 "

5 449
400 14 o 21471419 -
387
15366 367 B 370 nE
31 309

200 1

operators found paths

107 o8 116 ol

segment 1 segment 2 segment 3

mutation positions

segment 4 segment 5

interesting value 16/8 clone bytes
randomly subtract byte

delete bytes

overwrite bytes
extra overwrite

F1GuRre 3: The efficiency of mutation operators in different segments.

find the most 956 paths in segment 1, which are twice as
many as other operators. In segments 2-4, its found paths
are similar to other operators. But, in segment 5, its found
paths are less than other operators. Therefore, we believe
that mutation positions may also have different sensi-
tivities to operators.

After the above analysis, we find that mutation operators
and mutation positions both have impacts on the perfor-
mance of fuzzing. However, AFL only uses a random
scheduling scheme to treat them, which is inefficient in
generating interesting seeds.

3. Overview of GSA-Fuzz

In order to solve the existing problems, we present GSA-
Fuzz to make AFL work more efficiently. To be exact, GSA-
Fuzz improves the random scheduling scheme of AFL from
two aspects. First, it regards a seed as several segments and
uses GSA to learn the selection probability distribution of

Security and Communication Networks

operators and the selection probability distribution of seg-
ments. Second, it applies a position-sensitive strategy to
guide seed mutation.

In this section, we detailedly introduce GSA in Section
3.1. GSA-Fuzz models the selection of mutation operators
and mutation positions as optimization problems of par-
ticles in GSA space. It means that we establish two models
in GSA-Fuzz. Since the two models have the same
framework, we only take the optimization of operators as
an example to introduce some important concepts of GSA-
Fuzz in Sections 3.2 and 3.3. After that, we simply introduce
how GSA-Fuzz works to optimize fuzzing with GSA in
Sections 3.4 and 3.5.

3.1. Gravitational Search Algorithm (GSA). GSA is a heu-
ristic algorithm based on Newton’s law of gravitation,
which is used to solve optimization problems in multi-
dimensional spaces. It assumes that there are particles in
the space and each particle represents a solution to the
optimization problem. At the end of each optimization, all
particles will move toward the optimal particle. The in-
teraction among particles is shown in Figure 4. We can see
4 particles in space, and the size of a particle represents its
mass. M, receives 3 gravitational forces that come from
M,, M, and M,, and their resultant force is F,. That is,
M has the biggest mass, so M, tends to move to M, rather
than moving in the directions of other particles.

GSA can be regarded as an independent mass system,
which obeys Newton’s law of gravitation and Newton’s law
of motion. To be more precise, GSA follows two rules:

(i) Law of gravitation: Each particle attracts every other
particle in space, and the gravitational force between
two particles is proportional to their masses and
inversely proportional to the distance between them

(ii) Law of motion: The current velocity of a particle is
equal to the sum of the part of the current velocity
and the variation between the last velocity and the
current velocity

There are several scientific formulas based on the two
laws (considering there are N particles in GSA space):

X-:(x},..

1

d
.,xi,...,x?), (1)

where X; represents the position of the i-th particle in GSA
space and x¢ represents the position of the i-th particle in the
d-th dimension.

fi () —max(f(¢))

m; (1) = min (f (t)) — max(f () 2)
m; (t)
M. (f) = — i

where f; (t) represents fitness value of the i-th particle, m; (¢)
represents the gravitational mass of the i-th particle, and
M, (t) represents inertial mass of the i-th particle at time ¢.



Security and Communication Networks

FIGURE 4: Particles attract each other in GSA space [21].

GM, ()M (1)

d () —
By = R;; (1)

(x (1) - x5 (1),
@

J JjeKpest J
F; (t) = Z randiFl-]- (1),
ji=i
where Ff]- (t) represents received gravitational force of the
i-th particle from the j-th particle in the d-th dimension
at time t, G is a gravitational constant, R is Euclidean
distance between the i-th particle and the j-th particle,
Kpest 18 the set of top K particles with the best fitness
values and masses, and rand; is a random number be-
longs to (0,1).

20

M, (t) ©)

al (t) =

where af (t) is the acceleration of the i-th particle in the d-th
dimension at time ¢.

Based on these calculations, the positions of particles are
updated by following two rules, considering one round of
optimization as a time unit:

v;j (t+1) = rand; x v;j )+ a? (1),
(6)

(1) = x4 (@) + v (£ + 1),

where v represents the velocity of the i-th particle in the
d-th dimension.

Therefore, particles can approach the heaviest particle
after being optimized with GSA, which means that they can
move closer to the optimal position in space. Compared with
the PSO algorithm, GSA has better convergence and faster
optimization speed [21]. In addition to these two classic
optimization algorithms, some original optimization algo-
rithms also have an excellent performance like [14, 27], and
some researches scheduled by them have also been greatly
improved [15, 17, 27].

3.2. Particles. A particle in GSA-Fuzz is a probability dis-
tribution that contains the current probabilities of all op-
erators. We use a two-dimensional array position[x][d] to
represent the position of the current particle in GSA space
(each position represents a probability distribution of op-
erators) and use v[x][d] to save the current particle’s ve-
locities in all dimensions, where x is the number of particles
and d is the dimension of the space. The particle also has
other attributes, including mass, force, and acceleration,
which are all related to its fitness value.

3.3. Fitness Value. The fitness value is the core concept of
GSA; it determines the mass and inertia of the particle. In
Newton’s law of gravitation, the bigger mass one object
owns, the stronger inertia and stability it has. Thus, in GSA-
Fuzz, a particle’s fitness value is determined by its efficiency
in generating interesting seeds. That is, an efficient particle
will get a larger fitness value, and it also has a bigger mass
and stronger inertial. We use the following rule to calculate
the fitness value of each particle:

_Pi(®)
RO

(7)

where P; (t) and C,; (¢) are the number of generated seeds of
the i-th particle and the mutation times of the i-th particle at
time .

When fitness values of all particles are determined, their
gravitational masses (m) and inertial masses (M) can be
calculated. The calculations are shown in equations (2) and
(3). After each particle has an inertial mass, GSA-Fuzz can
calculate the forces and accelerations of particles in all di-
mensions. We use equations (4), (6), and (10) to update
related parameters.

d d
F/ (t) = Z rand,-Fij. (8)
].:l

Note that in our repeated experiments, we found that the
value of Ky has almost no effect on our learning process.
Without this parameter, the optimization process will be-
come even more unlikely to fall into the local optimum.
Thus, we removed the Ky, parameter in the GSA-Fuzz.

Based on these values, the positions of particles can be
updated. More specifically, for the d-th dimension of the i-th
particle at the end of time ¢, we update particles’ velocities
and positions for the time ¢ + 1 as follows:

Vi Li11d] = rand; x v, [i][d] + a, [1] [d], ©
9
position,,, [i][d] = position, [i] [d] + v, [i] [d].

3.4. Learning Selection Probability Distributions of Operators
and Segments with GSA. In learning the selection of oper-
ators, each particle represents a probability distribution of
operators. GSA-Fuzz applies each particle to guide seed
mutation and keeps evaluating particle efficiencies in gen-
erating interesting seeds. Note that the time for each particle
to guide the seed mutation is equal. Once all particles are



executed, GSA-Fuzz would optimize the positions of par-
ticles according to their efficiencies and use the updated
particles to guide the selection of operators in later fuzzing.
Finally, GSA-Fuzz can get the optimal probability distri-
bution of operators through the repeated learning process.

Similarly, in learning the selection of mutation positions,
GSA-Fuzz divides a seed into some segments and regards the
mutation probability of each segment as a particle. Note that
too many segments will greatly reduce the learning efficiency
of GSA, and too few segments do not reflect the discrepancy
among different mutation positions. In our experiments, we
found that the most suitable number of segments for mu-
tation is five. At the beginning of fuzzing, GSA-Fuzz uses a
uniform distribution to select mutation positions of seeds,
and it records the generated seeds of each segment. After a
period, GSA-Fuzz updates the uniform distribution with
GSA, and the segment that has generated more seeds will get
a greater mutation probability. The learning of segments is
also a repeated process, and it is synchronized with the
learning process of mutation operators.

3.5. Mutating Seeds with Position-Sensitive Strategy.
Mutation-based fuzzers usually follow a random scheme to
select mutation operators and mutation positions to guide
seed mutation. We have shown that both of them have
different efficiencies in generating interesting seeds in Section
2.2. In order to improve the random mutation scheme, we
design a position-sensitive strategy to improve the efficiency
of seed mutation, which may give efficient operators and
efficient mutation positions more chances for mutation.

In the strategy, GSA-Fuzz uses learned probability dis-
tributions of operators and segments to guide seed mutation.
To be precise, it selects a mutation position according to the
distribution of segments first and then applies suitable
distribution of operators to mutate the seed. This strategy
works most of the time in fuzzing, and we detailedly in-
troduce it in Section 4.4.

4. Implementation of GSA-Fuzz

4.1. Main Framework of GSA-Fuzz. Asshown in Figure 5, the
main workflow of GSA-Fuzz is marked as yellow arrows.
GSA-Fuzz mainly consists of GSA initialization, GSA
fuzzing, position-sensitive fuzzing, GSA updating, and p-
segment updating modules. In these modules, the GSA
fuzzing and the position-sensitive fuzzing modules are
fuzzing parts, and the other three modules contain pa-
rameter processing. We briefly introduce the modules as
follows and introduce some modules in detail in the fol-
lowing subsections.

In general, GSA-Fuzz is a cyclic fuzzing process com-
posed of multiple modules. In the process, the GSA ini-
tialization module is only executed once and the other four
modules form a loop to optimize the selection probability
distributions of operators and segments. Note that GSA-
Fuzz is implemented in the indeterministic stage of AFL, if it
is not set to skip the deterministic stage, it will enable the flip
mode to evaluate the efficiencies of the two stages. The flip

Security and Communication Networks

mode keeps working in the GSA fuzzing module and the
position-sensitive fuzzing module. We introduce the flip
mode in detail in Section 4.5.

In order to distinguish two particle models of learning
mutation position distribution and learning operator distri-
bution, we mainly use the word “particle” in this and following
subsections to only represent the particle model of learning
operator distribution and use the word “segment” directly to
represent the particle model of learning segment distribution.

Assuming that GSA-Fuzz is set to skip the deterministic
stage, it first executes the GSA initialization module to
initialize the values of particles’ attributes. Once all particles
are initialized, GSA-Fuzz enters the GSA fuzzing module and
employs particles to select mutation operators to mutate
seeds in turn. Meanwhile, it evaluates the efficiencies of
particles and the efficiencies of segments in generating in-
teresting seeds. So it can get the fitness values of segments
and further use them in the p-segment updating module. The
p-segment updating is the module to update the probability
distributions of operators and segments. Then, GSA-Fuzz
executes the position-sensitive fuzzing module and uses the
position-sensitive strategy to guide seed mutation. After this
module, it updates the values of particles” attributes in the
GSA updating module and returns to the GSA fuzzing
module for the next round of optimization.

4.2. GSA Initialization. GSA-Fuzz executes the GSA ini-
tialization module to initialize GSA parameters when it
starts. More specifically, it (1) sets the initial position of each
particle with a random value and normalizes all dimensions
in particles to 1, (2) sets all particles” gravitational masses to
1, and (3) sets initial velocities of dimensions in particles to 0.
The reason for setting the initial masses of particles to 1 and
the initial velocities of dimensions to 0 is to ensure that the
learning process of all particles is fair. This module is only
executed once.

4.3. GSA Fuzzing. After GSA parameters are initialized,
GSA-Fuzz executes the GSA fuzzing module. In this module,
the fuzzer employs particles to guide seed mutation in turn.
Meanwhile, it also calculates the fitness values of particles
and segments. In order to get these values, GSA-Fuzz rec-
ords four parameters in the module: (1) the number of
generated seeds of each particle, (2) the number of generated
seeds of each segment, (3) the mutation times of each
particle, and (4) the mutation times of each segment. Each
particle’s fitness value is calculated by (1) dividing (3), and
each segment’s fitness value is calculated by (2) dividing (4).
After GSA-fuzz gets all fitness values, it enters the p-segment
updating module to update related parameters for the po-
sition-sensitive fuzzing module.

4.4. Position-Sensitive Fuzzing. The Position-sensitive fuzzing
module is the core module of GSA-Fuzz. When AFL mutates
a seed, it selects operators first and then selects a mutation
position of the seed to mutate. In this module, GSA-Fuzz
selects a mutation position of the seed according to the



Security and Communication Networks 7

paths&&crashes

position-sensitive

GSA fuzzing fuzzing

GSA updating

Q
RN \fp/} : learn

\ N : IA
I
S 1

A
~ operators

ECREIAIOTS
SN A I
distribution I}

p-segment
updating

GSA initialization

1

I segments— operators H
1 PAA YA NN -
! distribution J |distribution ) !

FiGUre 5: The framework of GSA-Fuzz.

learned selection probability distribution of segments first and
then selects appropriate operators for mutation. The mutation
strategy of AFL and GSA-Fuzz are shown in Table 2, and the
details of the position-sensitive strategy are shown as follows.
Figure 6 shows how the position-sensitive strategy works
to guide seed mutation. More specifically, (1) fuzzer selects a
seed from the seed pool and divides it into 5 segments, (2)
fuzzer selects a mutation position of the seed according to the
selection probability distribution of segments, and judges
which segment it belongs to, (3) fuzzer uses operator prob-
ability distribution of the segment to guide seed mutation, and
(4) fuzzer saves the interesting seed and judges if mutation
energy of the seed is over. If energy is not over, the fuzzer will
return to step (2), and if energy is over, the fuzzer will return
to step (1) and start the next loop. Note that mutation energy
is the assigned mutation times of each seed by GSA-Fuzz.

4.5. Flip Mode. GSA-Fuzz is built in the indeterministic
stage of AFL. When the deterministic stage is enabled, GSA-
Fuzz will be used only after a long time. However, the
deterministic stage is also very useful under some condi-
tions. For example, its speed of finding new paths is faster
than the indeterministic stage in some periods, and AFL has
more opportunities to trigger the potential bugs of target
programs after performing a complete deterministic stage.
In order to utilize the deterministic stage efficiently, GSA-
Fuzz keeps evaluating the efficiencies of the deterministic
stage and indeterministic stage to implement smart
switching.

When the deterministic stage is enabled, if GSA-Fuzz
fails to find a new path within a period, it will directly enter
the indeterministic stage. After a period of fuzzing, the
fuzzer backs to the deterministic stage according to the
efficiencies of the two stages. We calculate their efficiencies
by the following equations:

Edet = ( 10)

E, , =" (11)

where Fy, and F;,; represent the number of generated seeds
in the deterministic stage and indeterministic stage, respec-
tively, and T4, and T),; represent the execution time of the
deterministic stage and indeterministic stage, respectively.

Compared with the pacemaker mode of MOPT-AFL, our
flip mode does not require users to specify the time of the
deterministic stage, and it may dynamically switch between
the two stages instead of always first executing the deter-
ministic stage and then switching to the indeterministic
stage. Also, the pacemaker mode will never reuse the de-
terministic stage once it enters the indeterministic stage.

We evaluate the flip mode in Section 5.6. It has the
following advantages:

(i) Flip mode may save a lot of time by skipping the
deterministic stage, and speed up the convergence
of GSA particles

(ii) Flip mode may accelerate GSA-Fuzz to enter the
position-sensitive fuzzing module

(iii) Flip mode evaluates the efficiencies of the determin-
istic stage and indeterministic stage in real-time and
implements a smart switching between the two stages

5. Evaluation

5.1. Experiment Configuration

5.1.1. Target Programs. We evaluate GSA-Fuzz on 10 open-
source programs. The reason for choosing these programs is
that most of them were evaluated by existing AFL-type



Security and Communication Networks

TaBLE 2: The differences in mutation strategy between AFL’s havoc stage and GSA-fuzz’s position-sensitive module.

AFL’s mutation strategy in havoc stage

GSA-fuzz’s mutation strategy in position-sensitive module

(1) Select a mutation operator by a uniform distribution (1) Segment a seed
(2) Choose a mutation position according to the distribution of segments

(2) Choose a random mutation position of the seed

(3) Judge which segment the position belongs to

(4) Use the operator distribution of the segment to select an operator

(3) Mutate the position with the selected operator

(5) Mutate the position with the selected operator

Bold values represent that the difference between GSA-Fuzz’s position-sensitive module and AFL’s havoc stages.

seed <
select a seed
set offset
NO
A —eee

sl |s2)s3]...

I
|
v

VvV

select a position

operators probability distribution
(learned by GSA)

VvV

sl

probability distribution of segments

seed pool =
P interesting seed )
I
I
I
YES :
I
1
ener
gZ + execution
over?
mutated
seed

which
segment?

» mutation

selected operators

e

s2 s3

FiGure 6: The workflow of the position-sensitive strategy in seed mutation.

TaBLE 3: Target programs.

Target Version Format Command

Sass libsass-3.6.4  scss ./sassc @@

pngtest libpng-1.6.37  png ./pngtest @@
binutils-

cxxfilt 2351 txt Jexxfilt

pdfimages  xpdf-4.02 pdf ./pdfimages @@/dev/null

pdftotext xpdf-4.02 pdf J/pdftotext @@/dev/null

Server openssl-1.1.1i  elf Jserver

objdump blzn;;ﬂls_ elf ./objdump -xsSD @@

nm-new binutils- olf J/nm-new -A -a -1-S -s -C

2.35.1 @@
infotocap  ncurses-6.2 txt ./infotocap @@
tcpdump thf;lI;lp- pcap ./tcpdump -ee -vv -nnr @@

fuzzers [4, 20], and their detailed information is shown in
Table 3. All experiments are executed without dictionaries.

5.1.2. Baseline. We compare GSA-Fuzz with three AFL-type
fuzzers, AFL [19], MOPT-AFL [20], and EcoFuzz [23].

5.1.3. Platform. All the experiments are finished on a 64 bit
machine with 40 cores (Intel(R) Xeon(R) CPU E5-2640 v4
2.40 GHz) and 62 GB RAM. The operating system of the

machine is Ubuntu 20.04. We fuzz all target programs for 24
hours and repeat each experiment 5 times.

5.1.4. Evaluation Metrics. Like other fuzzers [4, 20, 23], we
evaluate the performance of fuzzers using three metrics,
which are unique paths, line coverage, and unique crashes.
Besides, we also compare the CPU time that GSA-Fuzz and
MOPT-AFL consume in probability optimization. We use
afl-cov [28] to measure line coverage of target programs and
count the number of unique crashes by running crashes on
recompiled target programs with AddressSanitizer [29] and
stack hash [30].

5.2. Paths Analysis. As shown in Figure 7 and the left half of
Table 4, GSA-Fuzz outperforms the other three AFL-type
fuzzers on most target programs except nm. On libpng,
tcpdump, openssl, and infotocap, the performance of GSA-
Fuzz is better than the other three fuzzers. On pdftotext,
GSA-Fuzz finds 13689 paths, which are 134% more than
AFL, 127% more than MOPT-AFL, and 275% more than
EcoFuzz. On pdfimages and objdu-mp, the discovered paths
of GSA-Fuzz are also far ahead of the other three fuzzers. The
reason for GSA-Fuzz has such good performance is that the
position-sensitive strategy generates more interesting seeds,
and these seeds cover more lines of the programs. On nm,



Security and Communication Networks

Number of Paths

Number of Paths

Number of Paths

GSA-Fuzz loses to MOPT-AFL at a slight disadvantage. This
may be due to the fact that the selected seeds have very
uniform key information, which leads to deviations in the
learned mutation probabilities of segments. Since the

8000

6000

4000

/
2000 1,

12000

10000

8000

6000

4000

2000

0 5 10 15 20
Time (hour)
—— AFL --—= MOPT
—-—-— GSA-Fuzz Ecofuzz
(a) cxxfilt
7
s
S
s
[./" _/V
I
[
I3
g
0 5 10 15 20
Time (hour)
—— AFL -.—= MOPT
- -~ GSA-Fuzz Ecofuzz
(d) nm

14000
12000
10000
8000
6000
4000
2000

0 5 10 15 20
Time (hour)

—— AFL --—= MOPT

—-—-— GSA-Fuzz Ecofuzz
(g) pdfimages

GSA-Fuzz
5000 P B
” e T ., 1500
< 4000 P Rene 5
kS et 5 1250
S 30001 /7 s
g z _‘12 1000
- 750
E 20001, E
Z 1 Z 500
1000
250
0
0 5 10 15 20 0 5 10 15 20
Time (hour) Time (hour)
—— AFL --—= MOPT —— AFL --—= MOPT
—-—~- GSA-Fuzz Ecofuzz —-—-— GSA-Fuzz Ecofuzz
(b) infotocap () libpng
12000
élOOOO é
< <
A2« 8000 A~
S S
=} i=}
g 6000 o)
¥ E=)
E 4000 E
Z Z
2000
0
0 5 10 15 20 0 5 10 15 20
Time (hour) Time (hour)
—— AFL -.—= MOPT —— AFL --— MOPT
- -~ GSA-Fuzz Ecofuzz —~ -~ GSA-Fuzz Ecofuzz
(e) objdump (f) openssl
14000
12000 20000
@ @
é 10000 é 15000
& 8000 &
=] =]
B 6000 810000
g 4000 §
z Z 5000
2000
0 0
0 5 10 15 20 0 5 10 15 20
Time (hour) Time (hour)
—— AFL --—= MOPT —— AFL --—= MOPT
—-—~- GSA-Fuzz Ecofuzz —-—-— GSA-Fuzz Ecofuzz

(h) pdftotext

Number of Paths

0 5 10 15 20
Time (hour)

—— AFL --—- MOPT

- -~ GSA-Fuzz Ecofuzz

(j) tepdump

(i) sass

FIGURE 7: Average paths that AFL, MOPT-AFL, EcoFuzz, and GSA-Fuzz found over 5 runs in 24 hours.

discrepancy between the discovered paths of GSA-Fuzz and
MOPT-AFL is tiny and the performance of GSA-Fuzz is
superior to MOPT-AFL on other programs, we can still
believe that GSA-Fuzz

is the more effective one.



10 Security and Communication Networks
TaBLE 4: The average of three evaluation metrics on 10 target programs.
Tareet Paths/unique crashes Line coverage
argets

& AFL MOPT-AFL EcoFuzz GSA-Fuzz AFL (%) MOPT-AFL (%) EcoFuzz (%) GSA-Fuzz (%)
cxxfilt 6,709/0 7,742/0/ 5,674/0 8,498/0 18.61 18.75 18.63 22.44
infotocap 2,851/0 4,794/0 4,759/0 5,458/0 494 5.18 5.27 5.28
libpng 1,180/0 1,584/0 1,563/0 1,807/0 68.02 69.04 68.30 68.66
nm 3,344/0 11,813/0 11,740/0 11,488/0 40.62 41.82 41.06 41.54
Objdump 3,544/0 3,308/0 6,260/0 13,219/0 42.0 41.8 41.9 45.8
openssl 1,357/0 1,755/0 1,867/0 2,027/0 23.60 24.25 24.16 24.53
pdﬁmages 5,851/2 6,801/3 42,16/4 13,588/6 17.85 16.92 15.58 21.33
pdftotext 5,842/2 6,023/2 3,647/2 13,689/5 19.14 19.00 17.92 21.42
sass 7,150/0 18,216/2 11,211/0 21,881/4 43.89 51.15 41.28 51.76
tcpdump 4,330/0 10,413/0 11,266/0 11,822/0 15.99 26.60 23.43 27.05

Furthermore, we can also find that GSA-Fuzz has the fastest
speed of discovering paths in the first five hours, and this is
because GSA-Fuzz can quickly cover all parts of a seed. Once
a certain part of the seed has been mutated many times, the
efficiency of GSA-Fuzz in discovering new paths will become
lower. Therefore, GSA-Fuzz has the best performance in the
first few hours of fuzzing, and its efficiency gradually de-
creases afterward.

5.3. Coverage Analysis. GSA-Fuzz also shows its good
performance in line coverage. From the right half of Table 4,
we can find that GSA-Fuzz has higher line coverages on most
target programs. For instance, GSA-Fuzz covers 22.44% of
lines in cxxfilt while AFL covers 18.61%, MOPT-AFL covers
18.75%, and EcoFuzz covers 18.63%. On objdump, GSA-
fuzz has 21.42% line coverage, which is more than 19.14% of
AFL, 19% of MOPT-AFL, and 19.92% of EcoFuzz. On
pdfimages, tcpdump, and pdftotext, GSA-Fuzz also has an
obvious advantage compared with the other fuzzers. The
reason is that GSA-Fuzz generates much more interesting
seeds than the other three fuzzers on these three programs.
On infotocap, openssl, and sass, GSA-Fuzz has a similar
performance to AFL, MOPT-AFL, and EcoFuzz. On nm,
GSA-Fuzzloses to MOPT-AFL because it has not learned the
optimal selection probability distributions of segments in
two runs. On libpng, GSA-Fuzz generates more interesting
seeds than MOPT-AFL, but its coverage is still lower than
MOPT-AFL. The reason is that MOPT-AFL generates some
seeds that trigger rare branches of libpng. Although GSA-
Fuzz finds more paths, it does not detect a new search space
of libpng.

5.4. Vulnerabilities Analysis. We test the performance of
fuzzers in discovering vulnerabilities, and the results show
that fuzzers do not find a vulnerability in most cases for 24
hours. But, in the programs that trigger vulnerabilities, GSA-
Fuzz has the best performance. As shown in Table 4, GSA-
Fuzz finds 15 vulnerabilities on pdfimages, pdftotext, and
sass, while AFL finds 4 vulnerabilities, MOPT-AFL finds 7
vulnerabilities and EcoFuzz finds 6 vulnerabilities. Among
the 15 vulnerabilities that are triggered by GSA-Fuzz, there
are 9 stack-overflows, as well as 3 memory leaks and 3
SEGVs. In detail, there are 3 and 2 stack-overflows in

pdftotext and sass, respectively, and 4 stack-overflows in
pdfimages. Besides, GSA-Fuzz triggers each 1 memory leak
and each 1 SEGV in pdftotext and pdfimages, and it also
triggers 2 SEGVs in sass. Compared with GSA-Fuzz, the
vulnerabilities triggered by AFL, MOPT-AFL, and EcoFuzz
in pdfimages and pdftotext are all included in the triggered
vulnerabilities of GSA-Fuzz. On sass, there are only MOPT-
AFL and GSA-Fuzz trigger vulnerabilities, and GSA-Fuzz
triggers more vulnerabilities than MOPT-AFL.

We take sass as an example to introduce discovered
vulnerabilities in detail. In sass, GSA-Fuzz triggers 4 vul-
nerabilities, which are 2 stack-overflows and 2 SEGVs. For 2
stack-overflows, one occurs in the has_real_parent_ref ()
method online 363 of sr¢/selectors.cpp, and other one occurs
in the has_real parent ref () method online 549 of src/
selectors.cpp. This method is in a deep recursion, and the
frequent pushing of parameters is the cause of the vulner-
abilities. Between 2 SEGVs, one SEGV occurs in the sr¢/
ast.hpp, and it is caused by a read memory access. The other
SEGV is triggered by accessing an invalid address in src/
erreor_handling.hpp.

In summary, for both crash type and crash number, the
performance of GSA-Fuzz is better than AFL, MOPT-AFL,
and EcoFuzz.

5.5. Statistical Analysis. In order to ensure the evaluation is
comprehensive, we conduct a statistical analysis of our
experiments. We use the p value to measure the difference
between GSA-Fuzz and other fuzzers. As shown in Table 5,
pl, p2, and p3 represent the difference between GSA-Fuzz
with AFL, MOPT-AFL, and EcoFuzz. In Table 5, on total
paths, pl is smaller than 0.01 in all evaluations, which in-
dicates that the found paths of GSA-Fuzz and AFL differ
significantly. Then p2 is almost all less than 0.05 except on
infotocap, nm, and tcpdump, which means there is no
significant difference between the found paths of GSA-Fuzz
and MOPT-AFL on these three evaluations. Furthermore,
p3 is also smaller than 0.05 except on nm and tcpdump,
indicating that GSA-Fuzz triggers almost the same paths as
EcoFuzz on nm and tcpdump. Online coverage, both p1 and
p3 are smaller than 0.05, which proves that GSA-Fuzz
outperforms AFL and EcoFuzz. In most evaluations, p2 is
smaller than 0.05 but not on libpng and nm, indicating that



Security and Communication Networks 11
TaBLE 5: The p value in each evaluation.
Total paths Line coverage
Targets
pl p2 p3 pl p2 p3
exxfilt 2.1%107° 441072 2.8% 1077 3.5%107° 7.0 % 1072 3.1%107°
infotocap 2.6%1073 3.0%107! 3.2%1072 1.4% 1072 3.1%1072 2.5% 1072
libpng 2.9%107° 7.8 %1074 2.6+1072 4.0%1072 1.3%107} 8.4+x107*
nm 2.7 %1073 2.9% 107! 5.7 % 107! 8.5% 1077 3.6 107! 2.7 %1072
objdump 9.7%1074 1.0 %1073 41%1072 2641076 2.1%10°° 5.7%1073
openssl 3.1%107° 8.5% 1073 4.1% 107! 4.1%1074 2.5% 1072 4,9 %1072
pdfimages 7.0 %1074 1.7 %1073 53%1075 45%1073 5.7 %1073 2451074
pdftotext 1.6+ 10°* 1.8+ 10°* 1.3%10°* 8.7 1074 8.4+107* 3.3%107*
sass 12107 3.4 %1072 3.9%107* 2.3%1077 8.1%107°3 5.7 %107*
tcpdump 1.7 %1073 4.7 107! 4.1%107} 6.2+107° 121071 1.5% 1072
10 libpng the switching less than three times in 24 hours. For programs
9 with few execution paths such as libpng, GSA-Fuzz may
8 finish the switching more than three times. The reason is that
7 the efficiency of the indeterministic stage is always higher
o 6 than the deterministic stage in complex programs. There-
;fj 5 L fore, we can see that it is reasonable to automatically switch
%’ 4 between the two stages for better efficiency.
3 \ T
1 - . / 5.7. Efficiency of Learning Selection Probability Distribution of
0 \\/ Operators. In order to verify the effectiveness of GSA in

10 20 30 40 50 60 70

Times (min)

80 90 100 110 120

—— deterministic
®- indeterministic

FiGure 8: Efficiencies of the deterministic stage and indeterministic
stage vary over time.

the performance of GSA-Fuzz is similar to MOPT-AFL on
libpng and nm, and its performance is superior to MOPT-
AFL on other evaluations.

In summary, the performance of AFL is steadily lower
than GSA-Fuzz. Then MOPT-AFL performs as well as GSA-
Fuzz in discovering paths on some programs such as
infotocap and nm, and its performance of line coverage
corresponds with its discovered paths. Finally, EcoFuzz finds
many paths in some programs such as nm and openssl, but
its line coverage is generally low in most programs.

5.6. Efficiencies of the Deterministic Stage and Indeterministic
Stage in Flip Mode. In flip mode, GSA-Fuzz switches be-
tween the deterministic stage and indeterministic stage
according to their efficiencies in triggering new paths. Be-
cause GSA-Fuzz enables the deterministic stage, it executes
this stage first. If GSA-Fuzz does not find a new path or a
crash within a specified time, it will automatically enter the
indeterministic stage. We test the efficiencies of the deter-
ministic stage and indeterministic stage in the same period
on libpng. As shown in Figure 8, the efficiency of the de-
terministic stage is higher in five of the 12 periods than in the
indeterministic stage, and its efficiency is lower in the other 7
periods. In real-world testing, for programs with many
execution paths such as tcpdump, GSA-Fuzz may execute

optimizing the selection probability distribution of opera-
tors, we compare GSA-Fuzz with MOPT-AFL in probability
optimization. Note that GSA-Fuzz here is its test version
GSA-Fuzz (only-GSA), which only uses GSA to schedule the
selection of operators, and skips the position-sensitive
fuzzing module. We test 2 programs for 4 hours and show
the results in Table 6. In order to more intuitively reflect the
changes in operator probabilities, we only list the initial
probabilities of 6 operators and their optimized probabilities
after the fuzzer has been running for 4 hours.

Because MOPT-AFL and GSA-Fuzz initialize the oper-
ator probabilities with random values, there are differences in
initial operator probabilities. However, these will not affect
the optimization of operator probabilities. As shown in Ta-
ble 6, on sass, GSA-Fuzz executes 22 rounds of probability
optimization, which means GSA-Fuzz has learned operator
probabilities 22 times with GSA in 4 hours. Meanwhile,
MOPT-AFL executes 13 rounds of optimization. On
tcpdump, GSA-Fuzz executes 28 rounds of optimization
while MOPT-AFL executes 23 rounds. These show that GSA-
Fuzz can learn probability faster than MOPT-AFL. We can
also notice that there is a big difference between the learned
operator probabilities of GSA-Fuzz and MOPT-AFL at the
4th hour. This is because the period of first 4 hours is the
preliminary stage of probability learning. When increasing
the time of probability learning, the learned operator prob-
abilities of GSA-Fuzz and MOPT-AFL will eventually become
stable. Moreover, it is observed that GSA-Fuzz finds 9,534
paths in sass and 6,558 paths in tcpdump by applying learned
operator probabilities while MOPT-AFL finds 9,023 paths in
sass and 6,330 paths in tcpdump. These indicate that the
learned operator probabilities of GSA-Fuzz may be closer to
the true optimal operator probabilities than MOPT-AFL’s.



12 Security and Communication Networks
TABLE 6: 4-hour optimization of operator probabilities in GSA-Fuzz and MOPT-AFL.
Total
Target Fuzzer paths Round P (opl) P (op2) P (op3) P (op4) P (op5) P (op6)

Initial 0.05598028 0.05894883 0.06759142 0.04992040 0.05076231 0.06495813
sass MOPT-AFL 9023 13th l(;tutr};e 4th 0 04769217 0.04805608 0.04505965 0.02786796 0.03500074 0.03858628
Initial 0.06469484 005510837 0.04111614 0.07399413 0.04763995 0.02720640

sass GSA-Fuzz(only- go3s 2oth (at the 4th
GSA) hour) 0.06606950 0.04685606 0.04810734 0.06218584 0.04928828 0.04485260
Initial 0.06531494 0.03806765 0.05559310 0.05916312 0.08056653 0.06429057
tepdump  MOPT-AFL 6330 23th }(lez)tutrt)le 4th ) 04539392 0.03002448 0.03649274 0.04031799 0.05268548 0.04458380
Initial 0.07699334 0.08450678 0.06903984 0.07498587 0.01667453 0.02720640

tepdump  OOAFuzzlonly- - coie o gth (at the 4th
pdump GSA) houn) 0.07331001 0.05669671 0.07097238 0.06373888 0.04904132 0.04360007

5.8. Convergence Studies of MOPT-AFL and GSA-Fuzz. In
order to more intuitively reflect the difference between
MOPT-AFL and GSA-Fuzz in learning the probability
distribution of operators, we count the optimization times of
each case and record the optimized probability distribution
of operators in each optimization. Although there are more
than a dozen mutation operators in AFL, their optimization
processes are similar. Therefore, we only select operator
bitflip1/1 to show its convergence study.

As shown in Figure 9, on one hand, fuzzers have different
execution speeds in various programs, and the optimization
times (the times of learning optimal selection probability
distribution of operators) will also have a difference. For
instance, on openssl, pdftotext, and pdfimages, both GSA-
Fuzz and MOPT-AFL execute a few times of optimization
and the probability of bitflipl/1 only has a slight change
while not in other cases. On the other hand, MOPT-AFL has
a more fluctuating learning process (such as cxxfilt and
infotocap), and its range of probability variation is larger
than GSA-Fuzz. On the contrary, GSA-Fuzz has a more
detailed exploration process, which makes it work more
stably by using a probability distribution that is close to the
current optimal probability distribution.

5.9. CPU Time Comparaison between MOPT-AFL and GSA-
Fuzz in Optimizing the Probability Distribution of Operators.
We further compare the performance of MOPT-AFL and
GSA-Fuzz in terms of CPU time consumption. In this
subsection, each case has been tested for 4 hours and their
consumed CPU time in optimization of probability distri-
bution was recorded. Table 7 shows that the consumed CPU
time of GSA-Fuzz is slightly more than MOPT-AFL in all
cases. This is because GSA-Fuzz executed more optimization
times than MOPT-AFL and it has more computations in
each optimization. However, due to the magnitude of
consumed CPU time being only in microseconds (10° s) for
each optimization, the extra overhead in optimization has
nearly no effect on the performance of GSA-Fuzz.

5.10. Efficiency of Learning Selection Probability Distribution
of Positions. As shown in Section 2.2, mutation positions

have different efficiencies in generating interesting seeds.
Therefore, we use GSA to learn the selection probability
distribution of mutation positions, and GSA-Fuzz gives
more chances to the efficient parts in later fuzzing. In
contrast, we compare GSA-Fuzz to itself that disenables
position learning.

The results are shown in Table 8 and Figure 10. From
Table 8, GSA-Fuzz changes mutation probabilities of seg-
ments when it enables position learning, which means that
GSA-Fuzz has learned the mutation positions that are suitable
to mutate. For instance, in sass, GSA-Fuzz has learned that
segment 5 is more suitable to generate seeds, and its mutation
probability increased by nearly 0.24. In tcpdump, the mu-
tation probabilities of segment 1 and segment 2 increased by
nearly 0.2 and 0.1, respectively. After applying the learned
distribution to guide the seed mutation, the discovered paths
of GSA-Fuzz are also increased. As shown in Figure 10, the
discovered paths increased 5% on sass and 8% on tcpdump
when GSA-Fuzz enables position learning. From the exper-
iments, we can see that GSA-Fuzz brings benefits to fuzzing
through learning mutation positions. Therefore, it is mean-
ingful to give more fuzzing chances to the core parts of seeds.

5.11. Skip-Deterministic Experiments. In this subsection, we
run skip-deterministic experiments to further verify the
performance of GSA-Fuzz. In the experiments, AFL, MOPT-
AFL, and GSA-Fuzz are all set to skip the deterministic stage.
We use AFL (-d), MOPT (-d), and GSA-Fuzz (-d) to rep-
resent fuzzers that are set to skip the deterministic stage. The
environment settings are the same as in Section 5.1.

The results are shown in Table 9, from which we can
see that GSA-Fuzz’s performance in finding paths is better
than MOPT-AFL (-d) and AFL (-d). For instance, GSA-
Fuzz (-d) finds averaged 21494 paths over five runs in sass,
which are 11% more than MOPT-AFL (-d) and AFL (-d).
In pdfimages, GSA-Fuzz finds 14005 paths while MOPT-
AFL finds 12751 paths and AFL (-d) finds 12439 paths.
Both two comparison experiments demonstrate that GSA-
Fuzz (-d) can work more efficiently than AFL (-d) and
MOPT-AFL (-d). In conclusion, the learning of operators
and mutation positions can truly improve the perfor-
mance of fuzzing.



Security and Communication Networks

13

GSA-Fuzz
bitflip1/1 bitflip1/1 bitflip1/1
0.07 - . . 0.06 - . . 0.06 - . .
0.065 - 0.055 - 0.055 -
0.06 - o
£ 0055 £ 005 £ 005
g 005 g 0.045 - S 0.045 -
S 0.045 S S
a8 : = 0.04- 5 0.04-
= 004 = =
0.035 - 0.035 - 0.035 -
0.03 0.03 0.03
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Time (hour) Time (hour) Time (hour)
MOPT-AFL —— MOPT-AFL MOPT-AFL
GSA-Fuzz ——  GSA-Fuzz GSA-Fuzz
(a) cxxfilt (b) infotocap (c) libpng
bitflip1/1 bitflip1/1 bitflip1/1
0.07 - . . 0.07 - . . 0.09 - . .
0.068 -
0.08 0.065 - 0,085 .
006 7 7 7 7 7 7 0.06 -
E0062 - A . £ 0055 £ 008
2 O'OG'W £ 005, BOOS
S 0.058 - . - - : : S 0.045 - 2
B0.056 =) a 007 W
0.04 -
0.054 - 0.065 - . . . . . .
0.052 - 0.035 - ’
0.05 0.03 0.06
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Time (hour) Time (hour) Time (hour)
MOPT-AFL —— MOPT-AFL MOPT-AFL
GSA-Fuzz ——  GSA-Fuzz GSA-Fuzz
(d) nm (e) objdump (f) openssl
bitflip1/1 bitflip1/1 bitflip1/1
0.055 - . . . . . . 0.075 - . . 0.07 - . .
0.07 -
0.05 - . . . . . 0.065 - X
= Z 0.06- 5. 0.064
Z Z 0.055- Z Y
2 i) )
% 0.045 - %, 0.05 . %
= = 0.045 - &
= 0.04- = 0.04 - . . . . . . =
- 0.035 . . ) ) ] ) -
0.035 0.03
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Time (hour) Time (hour) Time (hour)
MOPT-AFL —— MOPT-AFL MOPT-AFL
GSA-Fuzz ——  GSA-Fuzz GSA-Fuzz
(g) pdfimages (h) pdftotext (i) sass
bitflip1/1
0.06 - - -
0.055 -
0.05 -
£ 0045
§ 0.04 -
S 0.035-
= 003
0.025 |
0.02
0 5 10 15 20
Time (hour)
—— MOPT-AFL
——  GSA-Fuzz

(j) tepdump

F1Gure 9: Convergence study of bitflipl/1 in each case: (a) cxxfilt, (b) infotocap, (c) infotocap, (d) nm, (e) objdump, (f) openssl, (g) pdfimages,

(h) pdftotext, (i) sass, and (j) tcpdump.

6. Related Work

6.1. Two Main Types of Fuzzing. In generating interesting
seeds, there are mainly two types of fuzzing, which are
generation-based fuzzing and mutation-based fuzzing.
Generation-based fuzzing. This type of fuzzing
usually needs sufficient knowledge of the seed format

[31-33]. It usually predefines a seed configuration file,
and all newly generated seeds are based on the config-
uration file. Without a concise document, it would be a
very difficult task for fuzzers to analyze the seed and
generate the seed configuration file. For example, Skyfire
[34] uses the knowledge in existing samples to generate
seed inputs with good distribution. GRIMOIRE [35]



14

Security and Communication Networks

TaBLE 7: The consumed CPU time (in seconds) of MOPT-AFL and GSA-Fuzz in optimization of probability distribution (4-hour runs).

Target MOPT-AFL GSA-Fuzz
cxxfilt 1.08 + 1074 3.12%107*
infotocap 7.00 107> 1.35%107*
libpng 7.5%107° 1.72 %1074
openssl 1.4%107° 47%107°
nm 5.3%107° 1.11% 107
objdump 3.4%107° 1.14 %1074
pdfimages 1.1%107° 2.1%107°
pdftotext 6%107° 2.2%107°
sass 3.7%107° 1.35%107%
tcpdump 8.7%107° 2.19%10°*
TaBLE 8: The example of 24-hour position learning in one of five runs.
Target Fuzzer Enable position learning P (segmentl) P (segment2) P (segment3) P (segment4) P (segment5)
N 0.2 0.2 0.2 0.2 0.2
sass GSA-Fuzz Y 0.06 0.11 0.15 0.24 0.44
N 0.2 0.2 0.2 0.2 0.2
tepdump  GSA-Fuzz Y 0.38 0.30 0.13 0.12 0.07

GSA-Fuzz learned the probability of each segment.

25000 -

21881
20757

20000 -

15000 -

11822 11000

10000 -

Total Paths

5000 -

sass tcpdump
programs

position learning

= w/o position learning

FIGURE 10: Averaged paths that GSA-Fuzz has found with enabling
position learning and disenabling position learning over 5 runs in
24 hours.

TaBLE 9: The performance of AFL, MOPT-AFL, and GSA-Fuzz in
skip-deterministic experiments when fuzzing sass.

Target Fuzzer Total paths
AFL (-d) 19105
sass MOPT-AFL (-d) 19391
GSA-Fuzz (-d) 21494
AFL (-d) 12439
pdfimages MOPT-AFL (-d) 12751
GSA-Fuzz (-d) 14005

uses grammar inference to generate highly structured
seeds.

Mutation-based fuzzing. Mutation-based fuzzing does
not need to know the structure of the file in advance, and they
are widely studied by researchers [19, 24, 25, 36, 37]. AFL-Fast

[1] is a classic improvement fuzzer of AFL. It introduces the
Markov Chain model to distribute higher energy to the low-
frequency paths, which improves the performance of AFL.
EcoFuzz [23] carries out deeper research on the energy
distribution of seeds and proposes a variant of the Adversarial
Multi-Armed Bandit model to make promotion. Aiming at
improving code coverage, Zhu proposed CSI-Fuzz [38],
which greatly reduces path collisions. There are also solutions
combined with other technologies (e.g. symbolic execution
[10, 39, 40], machine learning [22], reinforcement learning
[41], taint tracking [42, 43], etc.) to improve the efficiency of
fuzzing [11, 12, 35, 44-47].

6.2. Mutation Strategies in Fuzzing. We present GSA-Fuzz in
this paper, which is to generate high-quality seeds by guiding
the seed mutation with the GSA scheduling scheme. MOPT
[20] is a novel fuzzer that focuses on improving seed mu-
tation in scheduling the selection of mutation operators, and
it applies the PSO algorithm to learn the operator proba-
bilities for different programs. However, it has been proven
that the PSO algorithm does not perform well in exploring
the optimal solution in high-dimensional space [21], and this
causes MOPT to spend much time learning the operator
probabilities. Compared with MOPT, our GSA-Fuzz divides
a seed into multiple segments and applies GSA to optimize
operator probabilities in each segment. In learning operator
probabilities, GSA-Fuzz can learn faster than MOPT-AFL.

FairFuzz [4] marks the core parts of the seed according to
specific conditions and keeps these key parts from being
mutated. This strategy can reduce the fuzzing of high-fre-
quency paths. However, its efficiency highly depends on the
specific conditions, and it does not consider the whole seed.
Unlike FairFuzz, GSA-Fuzz lifts the restriction, and it regards
a seed as five parts rather than marking some small parts of
the seed. When GSA-Fuzz conducts a seed mutation, it will



Security and Communication Networks

mutate each part differently. Godefroid et al. [22] consider a
seed input as continuous input sequences and use RNN to
generate new seed inputs. But this scheme is just designed for
seed input of PDF format while GSA-Fuzz is a general so-
lution for the seed of all formats. Other fuzzers such as
AFLSmart [48] require users to provide prior knowledge to
keep the attribute of the seed format unchanged. In order to
get prior knowledge of seed format, users may need to search
for lots of initial seeds and analyze them, which is difficult to
fuzz real-world programs. In contrast, GSA-Fuzz does not
require any prior knowledge and can be used conveniently.

6.3. Seed Selection Strategies in Fuzzing. Our GSA scheme
can also combine with seed selection strategies because it can
produce many high-quality seeds for fuzzers. Therefore, we
summarize some related seed selection strategies.

Generally speaking, the efficiency of fuzzing is related to
the quality of the provided initial seeds. In order to improve
the quality of initial seeds, some solutions include selecting
the initial seeds from a large number of candidate seeds [8]
or generating high-quality seeds by processing high-struc-
tured seeds [34]. Besides, some researchers also design their
standards to select seeds for mutation. For example, AFL-
Fast [1] and VUzzer [25] prefer to choose the seed with a low
frequency for mutation. DeepFuzzer [7] has a statistical seed
selection algorithm that is used to judge the quality of seeds,
and CEREBRO [6] uses an online multi-objective-based
algorithm to evaluate the quality of seeds.

7. Conclusion

Popular mutation-based fuzzers such as AFL follow a random
seed mutation strategy, which is inefficient in handling mu-
tation operators and mutation positions of a seed. Therefore,
in this paper, we presented GSA-Fuzz to overcome the issue.
GSA-Fuzz uses the Gravitational Search Algorithm (GSA) to
learn the selection probability distributions of mutation op-
erators and mutation positions. It can quickly find efficient
operators and seed mutation positions and use them to guide
the mutation in real time, which greatly improves the mu-
tation efficiency of AFL. In addition, GSA-Fuzz manages
AFL’s two mutation stages more rationally through the
provided flip mode. Our testing of GSA-Fuzz on 10 open-
source programs showed that GSA-Fuzz found more paths
and unique crashes, and had a higher line coverage in most
cases, compared with three state-of-the-art fuzzers, AFL,
MOPT-AFL, and EcoFuzz. We also conducted a systematic
analysis of all experiments and proved the rationality and
practicality of GSA-Fuzz. Overall, GSA-Fuzz can significantly
improve the efficiency of seed mutation in AFL, and its GSA
scheme may also give benefits to other mutation-based fuzzers.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

15

Authors’ Contributions

Mingmin Lin contributed to conceptualization, methodology,
software, validation, data curation, formal analysis, and
writing original draft of the manuscript. Yingpei Zeng con-
tributed to methodology, resources, validation, investigation,
project administration, and funding acquisition. TingWu
contributed to resources and supervision. QiuhuaWang
contributed to resources and supervision. Linan Fang con-
tributed to supervision. Shanqing Guo contributed to re-
sources and funding acquisition.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China under Grant no. 61902098; in
part by the Zhejiang Provincial Natural Science Foundation
of China under Grant no. LY22F020022; in part by the
National Natural Science Foundation of China under Grant
no. 91546203; in part by the Key Research Project of Zhe-
jiang Province under Grant nos. 2020C01078, 2019C01 012,
and 2017C01062; and in part by Major Scientific and
Technological Innovation Projects of Shandong Province,
China under Grants no. 2017CXGC0704, 2018CXGC0708,
and 2019JZZ7Y010132 and the Qilu Young Scholar Program
of Shandong University.

References

[1] M. Bohme, V. T. Pham, and A. Roychoudhury, “Coverage-
based greybox fuzzing as Markov chain,” IEEE Transactions
on Software Engineering, vol. 45, no. 5, pp. 489-506, 2019.

[2] S. Gan, C. Zhang, X. Qin et al, “Collafl: path sensitive
fuzzing,” in Proceedings of the 2018 IEEE Symposium on Se-
curity and Privacy (S¢&P), pp. 679-696, IEEE, San Francisco,
CA, USA, May 2018.

[3] Z. M. Jiang, J. J. Bai, K. Lu, and S. M. Hu, “Fuzzing error
handling code using context-sensitive software fault injec-
tion,” in Proceedings of the 29th USENIX Security Symposium
(USENIX Security 20), pp. 2595-2612, USA, May 2020.

[4] C. Lemieux and K. Sen, Fairfuzz: Targeting Rare Branches to
Rapidly Increase Greybox Fuzz Testing Coverage, 2017, https://
arxiv.org/abs/1709.07101.

[5] T. Ji, Z. Wang, Z. Tian et al., “Aflpro: direction sensitive
fuzzing,” Journal of Information Security and Applications,
vol. 54, Article ID 102497, 2020.

[6] Y.Li, Y. Xue, H. Chen et al., “Cerebro: context-aware adaptive
fuzzing for effective vulnerability detection,” in Proceedings of
the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineeringpp. 533-544, 2019.

[7] J. Liang, Y. Jiang, M. Wang et al., “Deepfuzzer: accelerated
deep greybox fuzzing,” IEEE Transactions on Dependable and
Secure Computing, 2019.

[8] A. Rebert, S. K. Cha, T. Avgerinos et al., “Optimizing seed
selection for fuzzing,” in USENIX Security Symposium
(USENIX Security 14), pp. 861-875, 2014.

[9] Y. Chen, P. Li, J. Xu et al., “Savior: towards bug-driven hybrid
testing,” in 2020 IEEE Symposium on Security and Privacy
(S&P), pp. 1580-1596, IEEE, 2020.

[10] M. Cho, S. Kim, and T. Kwon, “Intriguer: field-level constraint
solving for hybrid fuzzing,” in Proceedings of the 2019 ACM


https://arxiv.org/abs/1709.07101
https://arxiv.org/abs/1709.07101

16

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

SIGSAC Conference on Computer and Communications Se-
curity, pp. 515-530, 2019.

N. Coppik, O. Schwahn, and N. Suri, “Memfuzz: using
memory accesses to guide fuzzing,” in 2019 12th IEEE Con-
ference on Software Testing, Validation and Verification
(ICST), pp. 48-58, IEEE, 2019.

S. Dinesh, N. Burow, D. Xu, and M. Payer, “Retrowrite:
statically instrumenting cots binaries for fuzzing and saniti-
zation,” in 2020 IEEE Symposium on Security and Privacy
(S&P), pp. 1497-1511, IEEE, 2020.

R. Eberhart and J. Kennedy, “A new optimizer using particle
swarm theory,” in MHS’95. Proceedings of the Sixth International
Symposium on Micro Machine and Human Science, pp. 39-43,
Teee, 1995.

H. Rezaei, “Grey wolf optimization (gwo) algorithm,” in
Advanced Optimization by Nature-Inspired Algorithms,
pp. 81-92, 2018.

F. Al Thobiani, S. Khatir, B. Benaissa, E. Ghandourah,
S. Mirjalili, and M. Abdel Wahab, “A hybrid pso and grey wolf
optimization algorithm for static and dynamic crack identi-
fication,” Theoretical and Applied Fracture Mechanics,
vol. 118, Article ID 103213, 2022.

Q. Chen, R. Jia, and S. Pang, “Deep long short-term memory
neural network for accelerated elastoplastic analysis of het-
erogeneous materials: an integrated data-driven surrogate
approach,” Composite Structures, vol. 264, Article ID 113688,
2021.

A. Ouladbrahim, I Belaidi, S. Khatir, E. Magagnini,
R. M. Capozucca, and M. Abdel Wahab, “Experimental crack
identification of api x70 steel pipeline using improved arti-
ficial neural networks based on whale optimization algo-
rithm,” Mechanics of Materials, vol. 166, Article ID 104200,
2022.

H. Tran-Ngoc, S. Khatir, H. Ho-Khac, G. De Roeck, and
T. M. Bui-Tien, “Efficient artificial neural networks based on a
hybrid metaheuristic optimization algorithm for damage
detection in laminated composite structures,” in Composite
Structures, 2021.

M. Zalewski, American Fuzzy Lop, 2014.

C. Lyu, S. Ji, C. Zhang et al, “Mopt: optimized mutation
scheduling for fuzzers,” in 28th USENIX Security Symposium
(USENIX Security 19), pp. 1949-1966, 2019.

E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “Gsa: a
gravitational search algorithm,” Information Sciences, vol. 179,
no. 13, pp. 2232-2248, 2009.

P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: machine
learning for input fuzzing,” in 2017 32nd IEEE/ACM Inter-
national Conference on Automated Software Engineering
(ASE), pp. 50-59, IEEE, 2017.

T. Yue, P. Wang, Y. Tang et al.,, “Ecofuzz: adaptive energy-
saving greybox fuzzing as a variant of the adversarial multi-
armed bandit,” in 29th USENIX Security Symposium (USENIX
Security 20), pp. 2307-2324, 2020.

K. Serebryany, Continuous Fuzzing with Libfuzzer and
Addresssanitizer157 pages, IEEE Cybersecurity Development
(SecDev), IEEE, 2016.

S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and
H. Bos, Vuzzer: Application-Aware Evolutionary Fuzzing,
pp. 1-14, NDSS, 2017.

A. D. Householder and J. M. Foote, Probability-based
Parameter Selection for Black-Box Fuzz Testing, CARNEGIE-
MELLON UNIV PITTSBURGH PA SOFTWARE ENGI-
NEERING INST, Technical Report, 2012.

(27]

(28]
(29

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

[44]

Security and Communication Networks

H. Tran-Ngog, S. Khatir, T. Le-Xuan, G. De Roeck, T. M. Bui-
Tien, and M. Abdel Wahab, “A novel machine-learning based
on the global search techniques using vectorized data for
damage detection in structures,” International Journal of
Engineering Science, vol. 157, 2020.

M. Rash, “afl-cov,” 2014.

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,
“Addresssanitizer: a fast address sanity checker,” in 2012
USENIX Annual Technical Conference (USENIX ATC 12),
pp. 309-318, 2012.

Y. Li, S. Ji, Y. Chen et al. “Unifuzz: a holistic and pragmatic
metrics-driven platform for evaluating fuzzers,” in 30th
USENIX Security Symposiumvol. 21, 2021.

P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based
whitebox fuzzing,” in Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and
Implementationvol. 43, no. 6, pp. 206-215, 2008.

C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code
fragments,” in 2Ist USENIX Security Symposium (USENIX
Security 12), pp. 445-458, 2012.

W. You, X. Liu, S. Ma, D. Perry, X. Zhang, and B. Liang, “SIf:
fuzzing without valid seed inputs,” in IEEE/ACM 4lst In-
ternational Conference on Software Engineering (ICSE)
pp. 712-723, IEEE, 2019.

J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: data-driven
seed generation for fuzzing,” in IEEE Symposium on Security
and Privacy (S&P), pp. 579-594, IEEE, 2017.

T. Blazytko, M. Bishop, C. Aschermann et al. “Grimoire:
synthesizing structure while fuzzing,” in 28th USENIX Se-
curity Symposium (USENIX Security 19), pp. 1985-2002, 2019.
M. Bohme, V. T. Pham, M. D. Nguyen, and A. Roychoudhury,
“Directed greybox fuzzing,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Se-
curity, pp. 2329-2344, 2017a.

P. Chen and H. Chen, “Angora: efficient fuzzing by principled
search,” in IEEE Symposium on Security and Privacy (S&P)
pp. 711-725, IEEE, 2018.

X. Zhu, X. Feng, X. Meng et al., “Csi-fuzz: full-speed edge
tracing using coverage sensitive instrumentation,” IEEE
Transactions on Dependable and Secure Computing, p. 1, 2020.
H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang, “Pangolin:
incremental hybrid fuzzing with polyhedral path abstraction,”
in 2020 IEEE Symposium on Security and Privacy (S&P)
pp. 1613-1627, IEEE, 2020.

Y. Yao, W. Zhou, Y. Jia, L. Zhu, P. Liu, and Y. Zhang,
“Identifying privilege separation vulnerabilities in iot firm-
ware with symbolic execution,” in European Symposium on
Research in Computer Security, pp. 638-657, Springer, 2019.
S. Reddy, C. Lemieux, R. Padhye, and K. Sen, “Quickly
generating diverse valid test inputs with reinforcement
learning,” in 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE), pp. 1410-1421, IEEE, 2020.

P. Chen, J. Liu, and H. Chen, “Matryoshka: fuzzing deeply
nested branches,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security,
pp. 499-513, 2019.

S. Gan, C. Zhang, P. Chen et al., “Greyone: data flow sensitive
fuzzing,” in 29th USENIX Security Symposium (USENIX Se-
curity 20), pp. 2577-2594, 2020.

C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz, “Ijon:
exploring deep state spaces via fuzzing,” in 2020 IEEE Sym-
posium on Security and Privacy (S&P), pp. 1597-1612, IEEE,
2020.



Security and Communication Networks

[45] K. Béttinger, P. Godefroid, and R. Singh, “Deep reinforce-
ment fuzzing,” in 2018 IEEE Security and Privacy Workshops
(SPW), pp. 116-122, IEEE, 2018.

[46] W. Drozd and M. D. Wagner, Fuzzergym: A Competitive
Framework for Fuzzing and Learning, arXiv preprint arXiv:
1807.07490, 2018.

[47] Y. Li, S. Ji, C. Lyu et al., “V-fuzz: vulnerability prediction-
assisted evolutionary fuzzing for binary programs,” IEEE
Transactions on Cybernetics, vol. 52, no. 5, pp. 3745-3756,
2022.

[48] V. T. Pham, M. Bohme, A. E. Santosa, A. R. Caciulescu, and
A. Roychoudhury, Smart Greybox Fuzzing, IEEE Transactions
on Software Engineering, 2019.

17



