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Abstract—Password managers are now widely used to help
manage passwords. However, password managers usually encrypt
passwords with algorithms that are not information-theoretically
secure, and such algorithms are increasingly vulnerable to attacks
over time. Given the critical role of passwords in safeguarding in-
formation systems and the possibility that users may retain their
passwords for extended periods, potentially up to a century, there
exists a substantial risk that attackers could preserve retrieved
password vaults and crack them later when the encryption
algorithms are broken. In this paper, we first propose methods to
estimate the lifetime of conventional encryption algorithms, which
shows that they usually are only about 20 ∼ 40 years. Then, we
present OTPPM, a novel password manager employing one-time
pad (OTP) encryption technology. As the OTP encryption scheme
is known to be information-theoretically secure, we develop
algorithms to integrate OTP into password management. With
OTPPM, passwords can be securely accessed remotely since the
password vaults are stored on cloud-based servers. A prototype
of OTPPM has been implemented, and evaluations demonstrate
its practicality and efficiency for real-world use.

Index Terms—Password Manager, Encryption Algorithm Life-
time, One-time Pad, OTP Encryption, Password Vault

I. INTRODUCTION

Passwords play a crucial role in information systems. With
the rapid evolution of the internet, individuals and enterprises
have generated vast amounts of data in information systems
that require effective management and protection under various
online accounts. Password leaks may cause frequent data
breach occurrences, and these breaches pose significant threats
to personal privacy and corporate financial health [1]. In
addition, it is known that people frequently use the same
password across multiple accounts [2], which significantly
increases the risk of a cascading security breach, where the
compromise of one account could potentially jeopardize all
associated accounts [3].

Password managers have emerged as a widely adopted
solution for addressing the challenges of password manage-
ment [4]. These tools enable users to securely store and
manage credentials for multiple accounts while facilitating the
generation of strong, unique passwords to enhance security.
Numerous password managers have been developed within the
industry [5], [6]. In the academic sphere, extensive research
has also been conducted on this topic [7]–[12], with a primary
focus on the security features and usability aspects of password
managers. For example, the vulnerabilities related to the
autofill feature in password managers are identified [8], and
honey vault is proposed to protect the real password vault [13].

However, the encryption algorithms employed by current
password managers lack information-theoretic security, posing
a significant risk as such encryption algorithms inevitably

degrade over time due to advances in computational power
and cryptanalysis techniques [4], [14]. Both symmetric and
asymmetric encryption algorithms are vulnerable to these
developments. For instance, the Data Encryption Standard
(DES), introduced in 1975, was successfully cracked by 1997
[15], while the RSA (Rivest–Shamir–Adleman) algorithm, first
published in 1977, now faces escalating threats from quantum
computing [16]–[18]. If password managers utilize such al-
gorithms to encrypt passwords in vaults, attackers who gain
access to these vaults could archive them and decrypt the con-
tents once the algorithms become obsolete. A striking example
occurred in 2019, when the passwords of UNIX pioneers
were compromised due to the leakage of encrypted credentials
on GitHub. The encryption methods, once considered secure
in the 1970s, are now deemed ”dangerously obsolete” [19].
While this risk applies broadly to all data encrypted with aging
algorithms, password vaults are particularly attractive targets
due to the critical role passwords play in securing information
systems and the tendency of users to retain the same passwords
for extended periods, potentially spanning decades or even
their entire lifetimes [2].

This study presents a novel password manager, OTPPM
(One-time Pad Password Manager), which leverages the prin-
ciples of one-time pad encryption [20]. We first propose two
methods to estimate the lifetime of conventional encryption
algorithms: a Kaplan-Meier estimator [21] based on historical
data, and a theoretical estimator based on computational
growth and cryptanalytic progress. The results show that their
lifetime is usually only about 20 ∼ 40 years. In contrast, OTP
encryption is always secure. The primary advantage of OTP
encryption lies in its use of a unique key for each encryption
operation, ensuring information-theoretic security. OTPPM in-
corporates carefully designed algorithms to effectively manage
and utilize OTP keys. Notably, OTPPM enables secure remote
access to passwords by storing encrypted vaults on a cloud-
based server. A prototype implementation of OTPPM was
developed and evaluated for usability and performance, with
the results demonstrating its practicality and efficiency in real-
world applications.

In summary, we make the following main contributions:
• We propose two methods to estimate the lifetime of

encryption algorithms.
• We propose a new password manager OTPPM which

could leverage the information-theoretically secure OTP
encryption to protect passwords.

• We implement a prototype of OTPPM and test its us-
ability and performance. We will publish our code for
research usage at https://github.com/OTPPM.



The remainder of this paper is structured as follows. Section
II introduces the background of the field. Section III presents
the methods to estimate the encryption algorithm lifetime.
Section IV discusses our threat model. Section V presents the
design details of OTPPM. Results and analysis of the study are
covered in Section VI and Section VII. Section VIII presents
the related work before we conclude our paper in Section IX.

II. BACKGROUND

A. Password Manager

A password manager is a computer program that allows
users to store and manage their passwords for information
systems like social media and mobile applications [4], [8].
Password managers can be in different forms like standalone
password managers, and built-in password managers [8],
[9]. Standalone password managers include popular password
managers like LastPass [5] and 1Password [6]. Built-in pass-
word managers include built-in password managers in web
browsers like Chrome and operation systems like iOS [9].

Password managers typically store user passwords in en-
crypted databases, commonly referred to as password vaults
[7], [10]. Symmetric encryption algorithms, such as AES,
are widely used for encrypting these databases [22], with
encryption keys derived from user-selected master passwords
using key derivation functions like PBKDF (Password-Based
Key Derivation Function) [23], [24]. To facilitate remote
access, password vaults are often stored on cloud servers,
exposing them to potential leakage in the event of cloud data
breaches [1]. The security of the encryption algorithms is
therefore very important [22], as attackers may attempt to
compromise these vaults. However, the algorithms employed
by current password managers [7], [10] are increasingly vul-
nerable to evolving computational capabilities and advances
in cryptographic attack methods [4], [14].

B. One-time Pad

The one-time pad (OTP) [20] is an encryption method
known for its theoretical absolute security. First described by
Frank Miller in 1882 [25], the OTP is proved as a perfectly
secure encryption (i.e., also called absolute security, uncon-
ditional security, or information-theoretic security) technique
[20]. The OTP is a random bit sequence and must be used
only once. During the encryption process, the plaintext is
XORed bit by bit with the corresponding bits from the pad,
and decryption is achieved by XORing the ciphertext with
the same bits from the pad. The simple XORing process also
makes OTP encryption more efficient than other encryption
algorithms that require multiple steps [26].

However, OTP is not without its limitations. The most
critical of these is the requirement that the OTP length must
match or exceed the length of the plaintext, restricting its
applicability to scenarios involving only a limited number
of bytes. Fortunately, this constraint aligns with the needs
of our application in password managers since the size of
password data usually is small, as demonstrated in Section
VI-E. Another significant limitation is that each OTP bit must

be used only once, and through careful design, our password
manager adheres to this principle as well.

III. ESTIMATION OF ENCRYPTION ALGORITHM LIFETIME

The encryption algorithms employed by conventional pass-
word managers will inevitably become obsolete [20], [27].
We aim to estimate the lifetime of encryption algorithms,
defined by the National Institute of Standards and Technology
(NIST) as the algorithm security lifetime [28]. Although we
attempted to identify existing methods for this purpose, no
suitable approaches were found. In this section, we propose
two methods to estimate the lifetime of encryption algorithms.

A. Estimation Using the Kaplan-Meier Estimator

We first estimate the lifetime of encryption algorithms
utilizing the Kaplan-Meier estimator based on historical data.
The Kaplan-Meier estimator (also known as the product-limit
estimator) [21] is one of the most widely used methods
for estimating survival functions, particularly in medical and
public health research, and has been applied in other domains,
such as the time-to-failure analysis of industrial components
[29], [30]. A notable advantage of this method is its ability to
account for censored data, where the occurrence of an event
(e.g., death) remains unobserved (e.g., loss to follow-up). In
our analysis, the survival time of an encryption algorithm is
defined as the interval between its introduction and its obso-
lescence. We determine the obsolescence time based on NIST
recommendations [31]. If an algorithm remains approved for
use as of 2025, we treat it as censored since its future status
is unknown. The survival function is calculated as:

S(t) =
∏

i:ti≤t

(1− di
ni

), (1)

where ti denotes the time at which at least one algorithm
becomes obsolete (i.e., an event occurs), di is the number
of algorithms that become obsolete at time ti, and ni is the
number of algorithms still considered secure up to ti.

The results are presented in Figure 1. The analysis in-
cludes 11 algorithms [31], encompassing symmetric encryp-
tion, asymmetric encryption, and hash functions, as these three
categories represent the principal types of algorithms used
to ”encrypt” content [27]. The findings indicate that most
algorithms remain secure for less than 30 years. The median
survival time, when the survival probability drops to 0.5, is
approximately 28 years. This result aligns with expectations,
given the natural progression of cryptanalysis and the continual
increase in computational capabilities.

B. Estimation With a Theoretical Model

We also develop a theoretical model to estimate the time re-
quired to compromise an encryption algorithm through brute-
force attacks, incorporating the effects of both computational
growth and cryptanalytic advancements.

Assume the current computational power is C0 key searches
per second for the algorithm under consideration. Computa-
tional power is assumed to double every y years. Meanwhile,
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Fig. 1. Kaplan-Meier survival curve for encryption algorithms.

cryptanalytic progress is modeled such that the effective
computational complexity of attacks decreases by a factor of
2x every 10 years. The initial computational complexity of
breaking the algorithm is A0 = 2a0 .

The computational power after t years (in keys per second)
is given by:

C(t) = C02
yt. (2)

The effective computational complexity A(t) required to
break the algorithm at time t is:

A(t) = 2a02−xt/10. (3)

An attacker aiming to complete the brute-force search
within a time window ∆t must satisfy:∫ t+∆t

t

C(τ)dτ ≥ A(t). (4)

For simplicity, we assume ∆t is one year. Noting that one
year has approximately 224.91 seconds (3600× 24× 365), the
above inequality becomes:

224.91C02
yt ≥ 2a02−xt/10, (5)

which simplifies to:

24.91 + log2 C0 + yt ≥ a0 − xt/10 (6)

=⇒ t ≥ a0 − 24.91− log2 C0

y + x/10
. (7)

Equation 7 provides an estimate of the minimum time
required for a successful brute-force attack. For instance,
consider the widely adopted AES-128 algorithm [32]. Its initial
computational complexity parameter a0 is 128. In 2022, the
search attack was approximately 9998 × 106 ≈ 233.22 keys
per second on an NVIDIA RTX 3080 GPU [33], [34]. For a
distributed system with 20 million such GPUs, the effective
computational rate would be about 254.22 keys per second [34].
Assuming y = 1, consistent with Huang’s Law that suggests
GPU performance doubles annually [35], [36], and setting
x = 10 to reflect potential quantum speedups like Grover’s
algorithm [18], we find:

t ≥ 128− 24.91− 54.22

1 + 10/10
= 24.43. (8)

Thus, under these assumptions, an attacker with access to
20 million commercial-off-the-shelf GPUs could potentially
recover an AES-128 key within one year around 2046. If
we set x = 20 to be more optimistic about the quantum
computing, t would be ≥ 16.29.

IV. THREAT MODEL

We briefly describe the threat model of OTPPM. We assume
the password vaults stored in the cloud may be retrieved by
attackers. For example, they may be leaked when data leak-
age incidents happen from cloud service providers. We also
assume such attackers are patient attacker, which means they
may store the obtained password vaults, waiting until either
computational resources become sufficient or the encryption
algorithms in use become vulnerable, enabling them to decrypt
the vaults in the future.

However, we assume there is no patient attacker in the
local environment. This means there is no patient attacker to
intercept local communication, such as communications via
LAN, Bluetooth, or USB, and there is no patient attacker to
comprise local servers or devices. We need such an assumption
because we need to manage OTPs in the local environment.
The assumption is also plausible since local environments are
under higher security protection (e.g., protected by firewalls).
There may be other ordinary attackers in the local environment
who want to get the passwords but will not save encrypted
password vaults or other ciphertext and wait for cracking in
the future.

V. DESIGN OF OTPPM

Fig. 2. The architecture of OTPPM.

Figure 2 illustrates the architecture and overall workflow
of OTPPM. Similar to other password managers, OTPPM
employs a password vault to store user credentials. However,
OTPPM differentiates itself by utilizing one-time pad (OTP)
encryption to secure the vault. The workflow of OTPPM
involves three primary components: (1) User Devices, in-
cluding desktops, phones, and laptops, which a user uses to
initiate password operations such as retrieval and updates.
(2) Local Server, which manages OTPs, accesses password
vaults, and interacts with the cloud server on behalf of the
user. The local server can operate on a standalone machine



or reside on the user’s devices, such as desktops or phones.
Additionally, multiple devices may share a single local server
to facilitate password management. (3) Cloud Server, which
stores encrypted password vaults and ensures synchronization
across devices, as user devices may not always connect to the
same local server. In OTPPM, only OTP-encrypted password
vaults are stored on the cloud server, and OTPs are never
uploaded, even when encrypted with algorithms like AES. This
design is critical under the threat model, which assumes that
patient attackers may obtain the cloud server’s data.

A password retrieval (reading) operation is used as an
example to illustrate a typical workflow, with additional work-
flows discussed in Section V-C. When a user wants to access
his or her passwords, the user communicates with the local
server through their device, providing his or her username and
password (which will be used as the master password as well).
The local server authenticates the user with the cloud server
using the credentials, and once authentication is successful,
it downloads the encrypted password vault from the cloud
server. The local server then decrypts the OTP using the master
password and uses the decrypted OTP to decrypt the password
vault, subsequently returning the passwords to the user.

A. One-time Pad Management

OTP management includes OTP generation and updates,
OTP encryption and decryption, and OTP synchronization.
Only user devices and local servers are involved in OTP
management, and the cloud server is unaware of OTPs. OTP
generation and updates occur under specific conditions, such as
when no OTP exists, the current OTP is insufficient in length,
or a regeneration is required. Initially, when a new user is
added to the OTPPM system, the user must request the local
server to generate a new OTP. If the existing OTP becomes
inadequate, for instance, due to the addition of numerous
passwords to the vault, two options are available: the system
can either generate a new OTP and append it to the existing
one or produce a longer OTP to completely replace the old
one. Additionally, users may opt to regenerate their OTPs to
reorganize the password vault. This is particularly useful in
scenarios where a significant number of passwords have been
deleted, leading to a substantial change in the vault’s structure,
as discussed later. OTPs can be generated using real random
sources within the computer, such as mouse movements,
network packet activity, and CPU noise, employing algorithms
like Fortuna [37]. Alternatively, OTPs can be generated by
dedicated hardware devices and securely transferred to the
local server [38].

OTP encryption and decryption are employed to safeguard
OTPs during transmission and storage. To protect OTPs,
OTPPM utilizes the AES-CBC encryption method [39] before
transmitting them to another local server or storing them
locally, as the system assumes potential threats from ordinary
attackers during local transmission. The AES encryption key
is derived from the user’s master password using the PBKDF2
algorithm [23]. Before being used to encrypt the user’s pass-
word vault, the OTP is securely decrypted.

OTP synchronization is required when a user employs
multiple local servers, ensuring that the OTP is consistently
updated across servers whenever it is generated or updated.
This synchronization is essential because local servers must
have access to the user’s OTP to decrypt the password vault.
To achieve synchronization, the user employs local communi-
cation methods, such as LAN, Bluetooth, or USB, to manually
transfer the encrypted OTP between local servers, exporting
it from one server and importing it into another. Avoiding
cloud-based synchronization prevents patient attackers from
intercepting the OTP. Since synchronization is an infrequent
operation, it is considered manageable in terms of user effort.
To safeguard against potential OTP loss, users are advised to
back up their OTPs in highly secure storage.

B. Password Vault Management

Password vault management is to manage the content of
the password database, i.e., the password vault, which includes
creating the password vault when the user first adds a password
entry, updating the password vault when the user modifies
his/her passwords, and reading the password vault when user
need to read his/her passwords.

First, the format of the password vault is introduced. Simi-
larly, the password vault of OTPPM is composed of password
entries [7], [10]. Each entry includes a UUID to identify
the entry in the password vault uniquely, a Label to identify
the validity of the entry (will be explained later), and other
fields like URL, Username, and Password for representing
the specific information of the entry. The password vault of
OTPPM is simply the concatenation of all the password entries
one by one.

In OTPPM, updating the password vault, such as adding,
modifying, or deleting entries, is handled in a unique manner.
Rather than directly modifying the original vault, updates are
appended to the end of the vault, as illustrated in Figure 3. This
approach ensures that the original content remains unchanged,
eliminating the need for re-encryption with a new OTP portion.
Instead, only the appended section, which is typically much
smaller, is encrypted using an unused segment of the OTP.
The appended section may include multiple updated entries if
the user modifies multiple passwords simultaneously and may
consist of several appended parts if updates occur at different
times. A Label field is employed to indicate the validity of
each entry. For example, if the Label field of a new entry is
marked as invalid, it signifies that the corresponding entry has
been deleted. The handling of the password vault is further
demonstrated through the reading algorithm described below.

Entry1 Entry2 EntryN A1_Entry1
... A1_EntryN1... A2_Entry1 A2_EntryN2...

Original Part
Appended 

Part1
Appended 

Part2

...

Fig. 3. An example password vault after being updated several times (in
plaintext).

The steps for reading password entries from a password
vault are outlined in Algorithm 1. A map data structure is



employed to store the mapping between UUIDs and their
corresponding password entries. Each entry in the vault is
processed sequentially. For the currently processed entry, its
UUID field is checked to determine whether the map already
contains a corresponding entry. If an entry with the same
UUID exists, the algorithm examines the Label field: if the
label indicates invalid, the entry is removed from the map; if
the label is valid, the algorithm calls COPYENTRY to overwrite
the existing entry in the map with the current one. If the
map does not already contain an entry with the same UUID,
the current entry is directly added to the map. Finally, the
password entries in the map are returned as the password
entries in the vault.

Algorithm 1: Reading Entries from the Password Vault
Input: PasswordVault (in plaintext)
Output: PasswordEntries

1 ID2EntryMap ← ∅ ; /* Initialize an empty
mapping from a UUID (i.e., key) to its
PasswordEntry (i.e., value) */

2 for Part in PasswordVault do
3 for Entry in Part do
4 if ID2EntryMap.CONTAINSKEY(Entry.UUID) then
5 if Entry.UUID == INVALID ENTRY then
6 ID2EntryMap.REMOVE(Entry.UUID)
7 else
8 COPYENTRY(Entry,

ID2EntryMap[Entry.UUID])
9 end

10 else
11 ID2EntryMap[Entry.UUID] = Entry
12 end
13 end
14 end
15 PasswordEntries = ID2EntryMap.VALUES()

The update of the password vault is implemented by retain-
ing the currently updated password entries. Whenever an entry
is newly added, modified, or deleted, it is marked as updated
using an in-memory-only field (i.e., not serialized into stor-
age). If the entry is deleted, its Label field is further changed
to INVALID ENTRY. Once a predefined timer expires or the
user manually triggers synchronization, the updated entries
are appended as an additional part at the end of the current
password vault. This appended part is then encrypted and the
vault is synchronized with the cloud server (as described in
Section V-C).

Over time, appended parts may accumulate as password
entries are updated multiple times, resulting in a password
vault with unnecessary size growth. For example, a modified
entry may occupy two or more entries if it is modified multiple
times. To address this, the password vault can be reorganized
(retrofit) by consolidating all changes and re-encrypting the
vault with a new OTP. This process involves merging all
appended parts into the original section of the password vault,
creating a new, streamlined vault that contains only the most
up-to-date password data, and synchronizing the vault to the
cloud server.

C. User Management and Password Vault Encryption

The cloud server in OTPPM is responsible for managing
user accounts, functioning similarly to traditional password
managers. New users register with the cloud server via their
local server, after which they determine a username and
password. This password also serves as the user’s master
password, reducing the need to remember multiple credentials.
Simultaneously, the user’s local server generates an OTP, as
previously described, which is securely stored on the local
server and never uploaded to the cloud server in any form.
Upon successfully logging into the cloud server through their
local server, users can download their encrypted password
vaults to the local server for reading and updating. Once
updated, the password vaults can be re-uploaded to the cloud
server. Details on reading and updating the password vault
are provided in Section V-B, while the processes of vault
encryption and decryption are discussed as follows.

Password Vault

One-time Pad

XOR Operation
Encrypted 

Password Vault

Cloud Server

Encrypted One-
time Pad

User Master 
Password

User Master Key

Local 
Storage/Commun

ication

PBKDF2

AES-CBC

Local Server

Fig. 4. The process of encrypting the password vault.

The password vault is encrypted with the OTP before
being uploaded to the cloud server and must be decrypted
at the local server before it can be read or updated. The
complete encryption process is illustrated in Figures 4. During
encryption, the user’s master password (i.e., main password)
is first used to derive an encryption key via PBKDF2 [23].
This key decrypts the encrypted OTP using AES-CBC [39],
as described earlier in Section V-A. Once the OTP is retrieved,
the password vault is encrypted through a byte-wise XOR
operation with the OTP. After encryption, the vault is ready
to be uploaded to the cloud server. The decryption process
mirrors the encryption steps: the OTP is first decrypted using
the key derived from the master password, and the same XOR
operation is applied to decrypt the password vault using the
OTP. The decrypted password vault can then be accessed and
updated through the local server, as detailed in Section V-B.

VI. EVALUATION

A. Implementation

We developed a prototype of OTPPM primarily using the Go
programming language. The implementation of the local server
and cloud server comprises approximately 1,000 lines of Go



code. Additionally, the local server includes a web-based user
interface, designed with HTML5 and CSS3, enabling access
from various user devices. Figure 5 illustrates the graphical
user interface (GUI) for adding a new password entry as an
example.

Fig. 5. The web interface of the OTPPM prototype.

B. Experiment Configuration

A computer with an 11th Gen Intel(R) Core(TM) i9-11950H
@ 2.60GHz, 2.61 GHz, 32.0 GB RAM, a 64-bit operating
system, and a 1024 GB SSD hard drive is used to run the
local server and also as the user device. The computer is also
used to run extra comparison tests. An ECS server in a public
cloud is used as the cloud server.

C. Time Efficiency Assessment

To evaluate the performance of the OTPPM prototype in
practical scenarios, we measured the time taken for several
operations. Specifically, the login time to the local server refers
to the duration from clicking the login button in the web UI to
successfully logging in to both the local and cloud servers. The
time of transmitting the vault denotes the time taken to transfer
the password vault from the cloud server to the local server.
The time for opening an entry reflects the duration required to
access a selected entry, while the time for updating an entry
represents the time needed to update an entry (performed only
on the local server). The synchronization time with the remote
server indicates the time spent updating the cloud server with
changes to the password vault. Synchronization can either be
triggered periodically or manually when changes are made to
the vault. Each operation was performed ten times to ensure
reliable measurements.

The data presented in Table I reveals that the login time,
vault transmission time, and synchronization time with the
cloud server exhibit slightly greater variability (i.e., standard

deviations), and with higher mean values across different trials.
These results are likely influenced by factors such as network
conditions and server processing capabilities. In contrast, the
time required to open an entry is shorter and more consistent,
as it involves only interaction with the local server and needs
less complex server processing. Most operations are completed
within 1 to 2 seconds. An exception is the synchronization
time with the cloud server, which may take 2 to 3 seconds,
but this occurs only when the password vault is modified and
can be handled in the background. These findings suggest that
OTPPM offers relatively fast performance.

D. Encryption Performance

To evaluate the performance of OTP encryption in securing
password vaults, a critical operation in OTPPM, we conducted
a comparative analysis with several widely used encryption
algorithms. The password vault size was assumed to range
from 50 KB to 500 KB. The encryption algorithms selected
for this study included RSA [40], AES [39], 3DES [41],
and Blowfish [42]. For each combination of vault size and
encryption algorithm, the encryption process was repeated
20 times to calculate the average encryption time, ensuring
reliable performance metrics.

The results, presented in Figure 6, demonstrate that OTP
encryption achieves the highest encryption speed across all
tested data sizes. This outcome aligns with expectations, as
OTP encryption relies solely on a simple XOR operation, with
its execution time primarily dictated by data I/O overhead.
AES encryption exhibits the second-fastest performance, bene-
fiting from its efficient algorithmic design and the optimization
support provided by modern hardware, including specialized
instruction sets. In contrast, 3DES, which applies the DES
encryption process three times, shows comparatively slower
speeds than AES. Blowfish performs slightly slower than AES
but outpaces 3DES. RSA encryption demonstrates reasonable
efficiency with smaller data sizes but suffers a marked decline
as data size increases, due to the computational complexity
of operations involving large integers. Furthermore, RSA
often requires segment-wise encryption for larger datasets,
compounding its performance limitations. Overall, while OTP
achieves the best performance, the other algorithms, excluding
RSA, demonstrate acceptable efficiency. OTP’s distinctiveness
lies primarily in its absolute security.

E. One-time Pad Usage

Since OTP encryption requires a pad of sufficient length
and the OTP must be regenerated or updated once exhausted,
we conducted an experiment to analyze OTP consumption
over time. In this study, we assume an average password
entry size of 100 B and a password vault initially containing
100 entries, consistent with a survey indicating that most
individuals have fewer than 100 password-protected accounts
[4]. Thus, the initial size of the password vault is 10 KB.
We further assume that users update their password vaults at
varying frequencies and ratios. For instance, a monthly update
frequency corresponds to updating the vault every month,



TABLE I
OPERATION TIME STATISTICS (IN SECONDS) OF 10 TRIALS.

Login Local Server Transmit the Vault Open an Entry Update an Entry Synchronize with
Cloud Server

Average 1.347 0.659 0.289 0.477 2.598

Standard Deviation 0.523 0.266 0.107 0.179 0.789

Fig. 6. The time used for different encryption algorithms.
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Fig. 7. The one-time pad usage of an initial 10KB password vault under
different update frequencies and ratios after a year.

while an update ratio of 0.1 signifies that 0.1 × 100 = 10
entries are modified during each update. The cumulative OTP
consumption, corresponding to the vault size after one year,
is then calculated.

The results are presented in Figure 7. It is evident that higher
update frequencies and larger update ratios result in greater
OTP consumption. However, the annual OTP usage remains
modest. For example, when 50 entries (i.e., an update ratio
of 0.5) are updated monthly, the total OTP consumption after
one year is only 70 KB, an increase of just 60 KB over the

initial 10 KB required for the vault. Under these conditions, an
initial OTP size of 1 MB would suffice for approximately 16
years before requiring regeneration or synchronization across
all associated local servers. These findings suggest that the
OTPPM password manager demands relatively modest OTP
lengths for typical use cases, with a moderately sized OTP
(e.g., 500 KB) lasting several years under ordinary usage
patterns.

VII. SECURITY ANALYSIS

The security of the password vault in OTPPM is ensured
during both transmission to and storage within the cloud. This
is because the vault is encrypted before transmission to the
cloud. We have carefully designed algorithms to ensure that the
encryption scheme adheres to the principles of OTP, such as
the requirement that each bit of the OTP is used only once. In
cases where the OTP length is insufficient, it is incrementally
updated or regenerated. Additionally, when users modify or
delete entries, the original vault remains unaltered; instead,
a new part is appended, ensuring that the updated data is
encrypted using a new portion of the OTP.

While we assume that local communication channels (such
as LAN and USB) contain no patient attackers, the OTP
is encrypted both during local communication and when in
local storage. This precaution aims to protect against ordinary
attackers or ”honest but curious” users. The encryption is
implemented using the standard AES algorithm, which we
consider sufficient to guard against threats posed by such users.
The local storage of the password vault is also secure since it
is encrypted with the OTP.

VIII. RELATED WORK

Password managers, as a crucial security tool, have been the
subject of increasingly in-depth research aimed at enhancing
both their security and operational convenience [4], [7]–[9],
[11], [12], [22], [43], [44]. The research could be roughly
divided into below two categories.

The security of password managers In [7] and [10], the
authors examine the vault formats and authentication mech-
anisms employed by existing password managers, revealing
that widely recognized encryption algorithms, such as AES,
are frequently utilized. Silver et al. [8] analyze vulnerabilities
related to the autofill feature in password managers, identifying
several successful attack vectors. Li et al. [22] investigate
other web-based attacks, including CSRF and XSS, that target
password managers. In [43], Wang et al. propose a method
where secrets are stored on the user’s smartphone, allowing the



device to participate in password generation to mitigate pass-
word leakage. However, this approach relies on the availability
of a smartphone and assumes the security of not absolute
secure cryptographic algorithms, such as SHA-256, which are
not impervious to future threats.

Several researchers have explored the use of honey vaults
to protect real password vaults. Bojinov et al. [13] propose
Kamouflage, a scheme that stores N−1 decoy vaults alongside
the real vault in the password storage. When an attacker
attempts to decrypt the storage using an incorrect master
password, they may access a decoy vault. Since the passwords
in the decoy vault resemble human-memorable passwords,
the attacker would need to attempt online logins to verify
them. Websites can leverage these login attempts to alert
users promptly. Chatterjee et al. [45] introduce a novel secure
encoding scheme that utilizes a natural language encoder to
generate more convincing decoys. Cheng et al. [46] propose an
incremental update mechanism designed to prevent attackers
from gleaning any information from outdated password stor-
age. The honey vault concept is orthogonal to our method and
could potentially be integrated into it.

The usability of password managers With the widespread
adoption of password managers, numerous researchers have
focused on their practical usage and how to enhance oper-
ational convenience. Pearman et al. [4] observe that users
of standalone password managers tend to prioritize security
more than those using built-in password managers. Ray et al.
[9] explore password manager adoption among older adults,
revealing that this demographic exhibits a heightened mistrust
of cloud-based password storage. Our OTP-based password
manager addresses this concern by storing the password vault
in cloud storage with perfect encryption, potentially alleviating
their mistrust. Mayer et al. [11] examine password manager
usage within a large university, finding that 77% of participants
already use such tools. Munyendo et al. [12] investigate factors
that drive users to switch password managers, identifying us-
ability and cost (e.g., subscription fees) as primary motivators.
While existing research on the operational convenience of
password managers may not directly pertain to security, it sig-
nificantly informs the design of more user-friendly password
management solutions.

IX. CONCLUSION AND FUTURE WORK

In this study, we first proposed two methods to estimate
the lifetime of conventional encryption algorithms. Then,
we designed and implemented a password manager named
OTPPM based on one-time pad (OTP) encryption technology,
aiming to provide a highly secure and convenient password
manager for users. With OTPPM each user’s password vault
is encrypted with a one-time pad, preventing hackers from
accessing passwords even if remote cloud servers are compro-
mised. Through a series of experiments and security analysis,
OTPPM demonstrates good performance and clear security
advantages. This makes it a compelling choice for users
requiring stringent password protection.
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