Improving Seed Quality with Historical Fuzzing Results

Yang 114, Yingpei Zeng®*, Xiangpu Song”? and Shanging Guo®*

4School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310000, China
bSchool of Cyber Science and Technology, Shangdong University, Qingdao 266237, China

ARTICLE INFO

Keywords:

Fuzzing

History information
Corpora minimization
Software testing

ABSTRACT

Context: Coverage-guided fuzzing (CGF) has achieved great success in discovering software vulner-
abilities. The efficiency of CGF highly relies on the quality of the initial seed corpus. Although there
have been some works in recent years investigating the initial seed selection, usually only the corpus
given by developers or downloaded from the Internet is used to get the initial seed corpus.
Objective: We assess several existing corpus minimization tools and find that none of them effectively
leverage information contained in historical fuzzing results. The historical fuzzing results may come
from previous fuzz testing or the emerging continuous fuzzing integration in the software development
cycle. Therefore, we want to utilize history fuzzing results to generate a high-quality initial corpus
to enhance the fuzzing performance. Besides, the size of the initial corpus will affect the fuzzing
efficiency, so using a minimization tool to extract valuable seeds from historical results is essential.
Method: We propose to use historical fuzzing results to help construct the initial seed corpus and
further develop a corpus minimization tool named MCM (multiple corpora minimization), which can
analyze multiple fuzzing results and use information including edge appearance frequency to help
seed selection.

Results: We implement a prototype of MCM and evaluate it on 10 open-source programs. Our
experiments show that by using historical fuzzing results to expand the size of the initial seed corpus
even a small number, e.g., from 20 to only 100, the branch coverage improves up to 14%. Meanwhile,
MCM can achieve higher code coverage than existing corpus minimization tools, including AFL-
CMIN and OPTIMIN.

Conclusion: Our study shows using historical results to generate a high-quality initial corpus is

practical and can effectively improve the fuzzing performance.

1. Introduction

Coverage-guided fuzzing (CGF) has become one of the
most prevalent software-testing methods in recent years
[8, 34, 50, 68, 65]. Since vulnerabilities are typically ac-
tivated through the execution of specific code paths, CGF
aims to explore more distinct code paths to identify novel
vulnerabilities. Importantly, the coverage information is dy-
namically updated when a new code path is executed, and
such information could guide the CGF fuzzer to explore the
uncovered part of the program under test. The initial seed
corpus is known to be important to the success of a fuzzing
campaign [23], as the developers of the Mozilla Firefox
browser remark: “Success of fuzzing really stands and falls
with the quality of the samples. If the originals don’t cover
certain parts of the implementation, then the fuzzer will also
have to do more work to get there" [38]. Users usually obtain
initial seeds from the program developers (e.g., finding seeds
in code repositories) or the Internet (e.g., searching for files
in given formats), and then minimize the corpus with a
corpus minimization tool like AFL-CMIN [28, 35, 23].

*This work was supported by Zhejiang Provincial Natural Science
Foundation of China under Grant No. LY22F020022, the National Natural
Science Foundation of China under Grant No. 61902098, the National
Natural Science Foundation of China under Grant No. 62372268, Shandong
Provincial Natural Science Foundation under Grant No. ZR2021LZH007
and No. ZR2022LZHO13, Jinan City "20 New Universities" Funding
Project under Grant No. 2021GXRC084

*Corresponding author

=] chrisly@hdu.edu.cn (Y. Li); yzengehdu.edu.cn (Y. Zeng);
songxiangpu@sdu.edu.cn (X. Song); guoshanqing@sdu.edu.cn (S. Guo)

Since a program may be fuzzed multiple times now, it is
possible to generate a high-quality corpus from the historical
fuzzing results. For example, users may fuzz different ver-
sions of a program to check whether there are vulnerabilities
in them. In OSS-Fuzz [49], many open-source programs are
being fuzzed day after day to detect bugs timely. Also, fuzz
testing is being added as a phase in continuous integration
(CD) [14, 2] in the software development cycle. All of the
fuzz testing could produce multiple historical fuzzing results
for a program. If we could extract useful seeds from them,
like successfully leveraging historical information in fields
like transfer learning [59] or reinforcement learning [22],
we could explore the program more efficiently in later fuzz
testing. Hence, we propose to use historical fuzzing results
to enhance the quality of the initial corpus. Given the large
number of seeds from historical fuzzing results, it is nec-
essary to employ a minimization tool to reduce or select a
subset of the historical fuzzing results to get useful seeds.

However, corpus minimization tools do not leverage
all important information contained in historical fuzzing
results. Recent research [62] has shown that the size of the
initial corpus will affect the efficiency of fuzzing. Thus,
it is important to keep the initial corpus reasonably small.
Existing tools commonly use edge tuple information (also
known as edge information), which is defined by AFL [64],
as the basis for minimization. Each program can be repre-
sented as a control flow graph, where each node corresponds
to a basic block, and edges represent the jumps between
these blocks. One popular tool, AFL-CMIN [64], employs
a greedy minimization algorithm to select seeds containing

Short Title of the Article

rare edge tuples. Another tool, OPTIMIN [19], formulates
corpus minimization as a Maximum Satisfiability Problem
(MAX-SAT) [26] to select seeds. Both fail to consider the
edge relationships across different fuzzing campaigns (or
say runs). Intuitively, an edge that occurs in each historical
fuzzing campaign is more likely to be discovered compared
to that only appears in a single fuzzing campaign, which
means the edges that occur in a single fuzzing campaign
should be retained first during the seed selection. Other
information like the time an edge first appeared in fuzzing
should also be considered, since the later discovered edges
may be harder to find in fuzzing.

To better utilize the valuable information in historical
fuzzing results, we developed a new minimization tool,
MCM, to extract more efficient seeds from these results.
First, MCM analyzes the coverage information and com-
putes edge frequency across multiple fuzzing results to ob-
tain the edge differential information. Next, it uses two dif-
ferent algorithms to select seeds from the historical fuzzing
results. The two algorithms are proposed based on the sim-
ilar ideas of two prevalent minimization tools AFL-CMIN
and OPTIMIN but modified to better select seeds from his-
torical fuzzing results. For MCM-CMIN, we choose seeds
with rare and later-appearance edges and add corresponding
seeds with faster execution speed into the corpus first, while
MCM-OPT tries to preserve more rare edges using the
MAX-SAT solver. By utilizing edge differential informa-
tion across different fuzzing campaigns, along with seed
execution speed and edge first appearance time, MCM can
successfully generate a compact corpus containing more
valuable seeds.

We compare MCM with AFL-CMIN and OPTIMIN on
10 open-source Linux programs. Our experiments show that
by reusing the historical results from the same program to
enlarge the initial corpus from 20 to only 100, the branch
coverage improves up to 14%. Besides, MCM-CMIN out-
performs MCM-OPT, AFL-CMIN, and OPTIMIN on most
of the programs when reusing historical fuzzing results.
Meanwhile, we chose four different commits and versions to
verify the effectiveness of using historical results on slightly
changed programs, and results show that the branch coverage
improves up to 14.9%.

In summary, we make the following main contributions:

e We propose to leverage historical fuzzing results to
help obtain initial seeds and demonstrate the method
can improve fuzzing efficiency on real programs.

e We propose a new seed corpus minimization tool
called MCM, which selects seeds from historical
fuzzing results based on the frequency and appearance
time of edges etc.

e We compare MCM with state-of-the-art corpus min-
imization tools AFL-CMIN and OPTIMIIN on 10
open-source programs. The results demonstrate that
MCM outperforms other corpus minimization tech-
niques. We will publish our code at https://github.
com/loren998/MCM.

The remainder of this paper is structured as follows.
Section 2 introduces the background and limitations of the
field. Section 3 discusses the reusing of historical results and
existing problems. Section 4 and Section 5 present the design
and implementation details of MCM. Results and analysis
of the study are covered in Section 6. Section 7 discusses
some limitations and observations of our work, and Section
8 presents the related work before we conclude our paper in
Section 9.

2. Background and limitations

2.1. Coverage-guided Fuzzing

Coverage-guided Fuzzing (CGF) [64, 13, 28] has proven
to be highly effective in locating bugs and vulnerabilities
in real-world software. The primary objective of CGF is
to explore as many code paths as possible to identify po-
tential weaknesses. Fuzzers employ various generation and
mutation strategies to generate random and even malicious
inputs for testing the target program (i.e., the program under
test, PUT). Due to the challenges associated with directly
observing the internal state of the target program, coverage
feedback is used to gauge the novelty of an execution. After
a significant duration of fuzzing runtime, the corpus will
comprise numerous interesting seeds, referred to as histor-
ical fuzzing results after fuzz testing.

Figure 1 illustrates the fundamental workflow and key
stages of CGF. These stages can be divided into two parts:
pre-processing and scheduling. The pre-processing stage
manages the corpus set before or during the fuzzing process,
while the scheduling is responsible for the primary fuzzing
execution procedure.

Pre-processing. As a well-structured seed set signifi-
cantly improves the fuzzing efficiency, existing works em-
ploy various methods to enhance the quality of the initial
corpus. Part of the existing fuzzers [32, 54, 15] utilizes the
corpus minimization tool AFL-CMIN to process the corpus
set, which is either by crawling the internet or provided by
developers of the target program. Another choice is using
the benchmark platforms [36] which provides seeds for the
testing. Nyx-net [48], StateAFL [39] and NSFuzz [45] test
their fuzzers on Profuzzbench [40] and EMS [33], FuzzJIT
[55] and Rapidfuzz [63] deploy their experiments on the
UNIFUZZ [28]. The efficiency of fuzzing is significantly
influenced by the quality of the initial corpus, as highlighted
in previous studies [23]. Therefore, the pre-processing stage
assumes great importance within the overall fuzzing process.

Scheduling. Scheduling is another crucial stage of the
fuzz testing responsible for managing the entire fuzzing pro-
cess. Throughout the fuzzing procedure, the fuzzer randomly
selects or prioritizes the most intriguing seed from the seed
queue, applying one or multiple mutations to generate new
inputs. Subsequently, the fuzzer tests the target program with
the newly generated input and continuously observes the
coverage feedback. Concurrently, the monitor assesses code
coverage changes to determine if a new path is executed or a
new crash is detected. Any input resulting in code coverage

First Author et al.: Preprint submitted to Elsevier

Page 2 of 14

https://github.com/loren998/MCM
https://github.com/loren998/MCM

Short Title of the Article

Pre-| processing Scheiuling

|_Select Select | Mutate

| | Seed 7 Mutation'|

B - e B

— Mutation _

[EIEI = — A

\ _ Corpus _ ©
3
<

Monitor Target program w
(R
Crash FeedBack
New coverag < >
J
Schedulmg

Fig. 1: Overview of Coverage-guided fuzzing.

alteration is considered interesting and will be added to the
seed corpus for further fuzzing.

2.2. AFL-CMIN and OPTIMIN

Due to the popularity of AFL [64], AFL-CMIN is one
of the most commonly used corpus minimization tools. It
utilizes a heuristic algorithm to create a smaller corpus that
covers all the edges. Specifically, AFL-CMIN prioritizes
edge tuples with rare occurrences, selects the smallest input
file for each edge tuple, and stores the corresponding seed.
By employing a greedy minimization algorithm and consid-
ering both file size and edge frequency, AFL-CMIN proves
highly effective in corpus minimization.

In contrast to AFL-CMIN, which employs a heuristic
algorithm, OPTIMIN [19] encodes the corpus minimization
as a maximum satisfiability problem. OPTIMIN treats edges
as hard constraints, ensuring that the solver must include
every edge in the solution. Additionally, it treats the ex-
clusion of specific seeds as a soft constraint, allowing the
solution to select a minimal number of seeds. To achieve
this, OPTIMIN employs EvalMaxSAT solver [4] to get the
solution. By generating the solution with the fewest number
of seeds, OPTIMIN proves itself to be an effective corpus
minimization tool.

2.3. Limitations of existing approaches

We analyze four programs of five historical fuzzing
results, as is shown in Table 1. Since the randomness of fuzz
testing, new edges appear each time different control flows
are explored. We can see that different fuzzing campaigns
commonly contain some unique edges which means that
they trigger different control flows. If rare edges have been
identified in previous fuzzing results, adding the correspond-
ing seed to the initial corpus can help trigger unique paths or
crashes. Traditional minimization tools retain all edges while
reducing their number to improve corpus quality. However,
for programs where most of the edges need to be triggered
by different seeds, the resultant solution is still excessively

Table 1
Unique edges in different fuzzing campaigns.

Target R1 R2 R3 R4 R5
pdfimages 55 106 31 182 13
tecpdump 103 451 208 319 383

nm 43 76 133 70 19
objdump 104 33 18 35 23

large. Xu et al. [62] demonstrated that time spent on open-
ing/closing test cases introduces a 2x overhead, which de-
creases the efficiency of fuzz testing. Additionally, treating
multiple fuzzing results as a whole will lose some crucial
information across different fuzzing campaigns (e.g., edge
appearing frequency across different fuzzing campaigns).
Hence, using corpus minimization tools to select part of rare
edges instead of holding all the edges is a better substitute.

Let’s illustrate with the following example: We have 10
fuzzing results where edge E1 appears in only one campaign
15 times and edge E2 appears once in every campaign.
When AFL-CMIN treats the 10 fuzzing results as a whole,
it prioritizes edge E2 over edge E1 due to its rarity. While
OPTIMIN treats E1 and E2 equally, which loses the edge’s
priority information. However, we can assert that if an edge
appears in every fuzzing result, it is more likely to continue
appearing in subsequent campaigns, as it is likely part of the
main control flow. Even though E1 has a higher occurrence
frequency (e.g., the corresponding seed has more descendant
seeds), if it only appears in a single campaign, it is more
likely part of a rare control flow and is difficult to trigger.
However, both AFL-CMIN and OPTIMIN fail to prioritize
the rarest edges and corresponding seeds, which decreases
the quality of the initial corpus.

3. History reusing for corpus generation

In this section, we introduce the structure of using min-
imization tools to generate a high-quality initial corpus
using historical fuzzing results and some limitations of using
existing minimization tools.

Historical Corpora

B
B
B
B

T Corpus collection

Corpus minimization

E E Guide
é * '—’@CorpusGeneratlon

____________ e

Test case

Jo

uzzer

Fig. 2: The workflow of initial corpus generation using historical
fuzzing corpora.

First Author et al.: Preprint submitted to Elsevier

Page 3 of 14

Short Title of the Article

Figure 2 shows the overall workflow of historical fuzzing
results (historical corpora) reusing to generate a high-quality
initial corpus. To effectively minimize the multiple corpora,
the relation learning process refines the concept of edge
frequency by computing edge appearances across different
fuzzing campaigns, and prioritizing the identification of rare
control flows. The newly generated edge frequency will then
be used to aid in seed selection, which will subsequently
generate the new corpus. The corpus is then employed for
fuzzing over a user-specified duration, and the final corpus
will be collected for future historical corpora reusing.

Both AFL-CMIN and OPTIMIN can only minimize a
single corpus, so historical corpora must be merged into one
integrated corpus. AFL-CMIN’s relation learning is based
on edge frequency, while OPTIMIN defaults to whether an
edge is executed.

By using a heuristic algorithm, AFL-CMIN successfully
selects seeds one by one until all edges are covered. How-
ever, due to the excessive number of seeds in multiple cor-
pora, OPTIMIN often fails to generate a minimized solution
because of the limitations of the SAT solver. One solution
is to use OPTIMIN to minimize each corpus individually
before merging them into an integrated corpus, and then
use OPTIMIN again to generate the final minimized corpus.
Another approach is to minimize one corpus with OPTIMIN,
merge it with the next corpus, and repeat this process until
all corpora are merged. Both solutions may result in a
non-globally optimal minimized corpus, as some interesting
seeds might be filtered out during the simplification process.

While the minimized solution can be generated from
the consolidated corpus, the differential information across
multiple fuzz testing campaigns is disregarded, as the ex-
ample mentioned above in Section 2.3, which will decrease
the quality of the initial corpus. Besides the initial corpus
generated by AFL-CMIN and OPTIMIN can still be too
large which is not practical to use. Therefore, we believe
that leveraging differential information from various fuzzing
campaigns can aid in relation learning to select more valu-
able seeds from historical corpora. To better reuse historical
corpora, we modified AFL-CMIN and OPTIMIN and pro-
posed our MCM to select more effective seeds.

4. Design of MCM

This section elaborates on the keys of MCM and details
two new minimization algorithms MCM-CMIN and MCM-
OPT modified based on AFL-CMIN and OPTIMIN. Let =
be one fuzzing corpus, while x represents historical corpora
which consist of a set of 7.

4.1. Keys of MCM

One of the keys to MCM is differential information
across multiple historical corpora. To be specific, the fre-
quency at which an edge appears among different historical
fuzzing results is important since we can find in Table 1 that
different fuzzing results usually contain some unique edges.
To avoid ambiguity, we refer to it as the edge appearance

frequency in the rest of the article. Historical corpora typ-
ically contain various edges, but not all edges are equally
important, and we should focus more on the rare ones. Exist-
ing corpus minimization tools consider the edge frequency
instead of the edge appearance frequency across different
fuzzing campaigns. As the example in section 2.3 shows, this
will undermine the quality of the minimized corpus if we re-
strict the size of the initial corpus. Consequently, it becomes
necessary to calculate the edge appearance frequency across
different fuzzing campaigns to enhance the seed selection.

Edge debut time is also an important factor, it can in-
dicate the difficulty an edge is to explore because rare edges
usually appear later. Edge debut time is the time correspond-
ing to the earliest appearance of the seed containing this
edge. It can be represented by the relative time from the
beginning of the fuzz testing to the seed that first contains
this edge in the historical fuzzing results. When a new
edge is detected, the fuzzer will preserve the corresponding
seed to the corpus immediately. The successor of this seed
will likely contain the same newfound edge, which means
only the earliest time the edge appears is of importance.
Therefore, we can prioritize edges with longer time intervals
and save corresponding seeds to make the minimization
more effective.

Another crucial aspect to consider is the seed execu-
tion speed. The more inputs the target program executes,
the more likely the fuzzer will uncover new paths. Slow
execution speeds of chosen seeds can hinder the number of
inputs tested by the target program. Conversely, opting for
seeds with higher execution speeds can facilitate the testing
of a larger number of inputs. We incorporate seed execution
speed instead of file size since we think seed execution speed
is a more accurate indicator.

Algorithm 1: MCM Relation Learning

Input: Historical corpora k
Output: EdgeCount, EdgeMap
1 forr e xdo
for Seed € 7 do
SeedCov, SeedSpeed < SHOWMAP(Seed)
for Edge € SeedCov do
SeedInfo « PAIR(Seed.SeedID, SeedSpeed)
EdgeMap[Edge.EdgeID].ADD(SeedInfo)
EdgeSet.ADD(Edge.EdgelID)
end
end
for Edge € EdgeSet do
1 \ EdgeCount[Edge.EdgeID].ADD(1)
12 end
13 end

R T N

-
5

MCM'’s relation learning is shown in Algorithm 1. AFL-
CMIN takes edge frequency into account as its relation
learning and OPTIMIN uses whether an edge is executed as
its relation learning. Different from the above two relation
learning, MCM learns edge appearance frequency across
multiple historical corpora to get differential information. To
be specific, for every corpus 7, MCM learns similar infor-
mation as OPTIMIN does. MCM uses SeedInfo consisting
of SeedID and SeedSpeed for getting edge debut time and
seed execution speed (line 5). When an edge appears earlier,

First Author et al.: Preprint submitted to Elsevier

Page 4 of 14

Short Title of the Article

(a) Program control-flow graph

$12 A-B—E—K

Corpus 1: 2 A—C—F
A—C—G—H
s3 - A—-C—F
Corpus 2: A—-B-D
S4 [A—-B—-D—l
S5 A—>B
Corpus 3: - A>C—G—H

$6 1 A—B—D—J

(b) Seed traces. The corpus c is considered
as simple historical results, each seed s
within the corpus represents a seed, and
the sequence following the seed is viewed
as a simplified control flow.

MCM-OPT constraints

Edges:
(AB): S1vS3vsS4vs5vsSe Wemn
(A,C): S2 v S3v S5 Wemin
(B,D): S3 v S4 v S6 Wemin
(C,F): S2 v S3 Wepin
(C,G), (G,H): 82 v S5 Wenin
(B,E), (EK): S Wemax
(D.1): 34 Wemax
(D,J): S6 We pax
Seeds
~81,782,783,54,785, 56 Ws

(c) MCM-OPT CNF constraints. MCM-OPT treat both
edges and seeds constraints as soft constraints to
select the most important seeds from the
corpus. Each edge is encodeed as a disjunction of
seeds that cover that edge, and will assign weight
according to appearance frequency across different
corpus, ranging from We ;. to We .. Each seed is
assigned a negation clause with weight Ws to
minimize the corpus size.

Fig. 3: MCM-OPT historical corpora reusing.

its corresponding number in SeedID will be smaller. MCM
uses the number, which is the serial number in the corpus
generated by the fuzzer when the seed is added to the corpus
during the fuzzy testing process, to get the edge debut time.
We further calculate the appearance frequency of an edge
appearing in different historical corpora (lines 10-12), and
then we can get the edge appearance frequency. So, for both
MCM-OPT and MCM-CMIN, their first step will be MCM
relation learning to get the edge appearance frequency and
other key information mentioned above.

4.2. MCM-OPT

Similar to OPTIMIN, MCM-OPT also encodes the seed
selection to a MAX-SAT problem. Since multiple fuzzing
results consisted of excessive edges, it is unfeasible to save
all the edges in the solution, which otherwise would lead
to the initial corpus of impractical size and relatively low
quality. Hence, we modify OPTIMIN and propose the design
of MCM-OPT, as is shown in Algorithm 2 to consider edges
whose appearance frequency is smaller than half of the
corpora number as important instead of maintaining all the
edges.

After MCM’s relation learning, MCM-OPT generates
weighted MAX-SAT soft constraints for each edge and seed
(lines 2-13). For all seeds that contain a specific edge, MCM-
OPT uses the OR operation to combine them to form an
edge expression (line 6), so that at least one of these seeds is

retained. Besides, it sets a negation clause for each seed with
weight W's to minimize the corpus size (line 7).

Algorithm 2: MCM-OPT Seed Processing

Input: Historical corpora k', EdgeCount, EdgeMap
Output: SeedCorpus (minimized seed corpus)

1 // Stepl: Generate weighted MAX-SAT soft constraints

2 for [EdgelD, SeedsInfo] € EdgeMap do

3 EdgesExpr < FALSE

4 for SeedInfo € SeedsInfo do

5 CurSeedID « SeedInfo.SeedID

6 EdgesExpr.OR(CurSeedID)

7 SeedClause < GENSEEDCLAUSE(!CurSeedID, SeedWeight)
8 Solver.ADD(SeedClause)

9 end

10 EdgeWeight < ASSIGNWEIGHT(EdgeCount[EdgeID])

11 EdgeClause <~ GENEDGECLAUSE(EdgesExpr, EdgeWeight)
12 Solver.ADD(EdgeClause)
13 end

14 // Step2: Solve weighted MAX-SAT problem and generate corpus
15 SolverResult < CHECK(Solver)
16 if ISSAT(SolverResult) then

17 for SeedClause € AllClauses do

18 if SeedClause.ISTRUE then

19 Seed < GETSEED(SeedClause.SeedID, «)
20 SeedCorpus.ADD(Seed)

21 end

22 end

23 end

24 else

25 ‘ SeedCorpus «

26 end

MCM-OPT then assigns the weight for every edge ac-
cording to its edge appearance frequency across different

First Author et al.: Preprint submitted to Elsevier

Page 5 of 14

Short Title of the Article

fuzzing campaigns (lines 10-11), ranging from We_;, to
Wen.c- The weight assignment is performed to tell the
solver the loss of disregard specific edge when addressing
the satisfiability problem. For edges that only appear in a
single campaign, a weight of We,,, is assigned, indicating
that discarding this edge would result in the maximum
loss. Conversely, if an edge appears more frequently across
multiple campaigns, a lower weight is assigned. Currently,
we only use We,,, and We_, to make the satisfiability
problem easy to solve.

Finally, MCM-OPT employs the SAT solver to solve
the weighted MAX-SAT problem (lines 15-26). The solver
evaluates whether a solution exists. If the solver’s state is
SAT, indicating a minimized corpus can be generated, it
incorporates seeds into the corpus in which the correspond-
ing clauses are satisfied (lines 18-21). Otherwise, the SAT
solver can not generate a solution, and all the seeds will be
preserved. Since MCM-OPT treats the chosen seeds equally,
it will select seeds randomly to meet the size requirement if
the user predefined the size threshold of the initial corpus.

For illustrative purposes, consider the following example
in Figure 3 involving three historical corpora reusing. As the
corpora number of this example is three, that means MCM-
OPT only considers those edges whose appearance fre-
quency is one as important. So edges (B, E), (E, K), (D, J),
and (D, I) are treated as important and will be assigned
with We,,,,. While other edges are relatively unimportant
and will be assigned with We_,;,. So, some example edge
clauses can be expressed as Equation 1 and Equation 2. For
each seed, S| — S5, MCM-OPT generates seed clauses like
Equation 3.

max

Clause_(B,E) = (S1, Wep,.y) €))]
Clause_(A,C) = (S2Vv S3V S5 We;,) 2)
Clause_(S;) = (IS1,Ws) 3)

After generating the edge and seed clauses, MCM-
OPT can then use SAT-Prover to generate the solution.
since MCM-OPT only considers (B, E), (E, K), (D, J), and
(D, I) as important, then the generated corpus will be
81,84, Sg. Since OPTIMIN needs to maintain all the edges,
its solution will be Sy, Sy, S¢ and .S,. However, we can find
edges in S, appear in more than half of the corpora number,
which is easily to be explored.

Nevertheless, due to the limitation of the SAT solver,
encoding factors such as the edge debut time and the seed
execution speed into seed selection will result in the solver
failing to generate a solution. Thus, we introduce MCM-
CMIN to optimize the utilization of MCM’s important fac-
tors.

4.3. MCM-CMIN

MCM-CMIN employs a heuristic greedy approach for
seed selection, as is shown in Algorithm 3. Similar to AFL-
CMIN, MCM-CMIN also tries to find a locally optimal
solution. But MCM-CMIN replaces the edge frequency with
edge appearance frequency across different fuzzing cam-
paigns and uses other factors like edge debut time to help
seed selection. MCM-CMIN implements a greedy algorithm
to select the best seeds one by one based on the MCM’s
key factors until the required number of the initial corpus
is achieved.

After getting MCM’s relation learning information,
MCM-CMIN employs edge appearance frequency and edge
debut time to identify the best candidate edge (lines 5-17).
MCM-CMIN will first generate a container for storing edge
and seed information from the EdgeMap and EdgeCount
(lines 5-15). To be specific, it will get the edge appearance
frequency from EdgeCount (line 5). Meanwhile, MCM-
CMIN will compare the SeedInfo from the EdgeMap and
use the corresponding number in SeedID as the indicator of
the relative time interval to get the edge debut time (lines 8-
12). Then the container will be sorted with edge appearance
frequency in ascending order first. If edges with the same
appearance frequency, MCM-CMIN sorts with edge debut
time in descending order (line 16). After sorting, the first
edge in the container is the optimal edge (line 17).

Upon selecting the optimal edge, the candidate seeds can
be further filtered based on the execution speed to choose the
seed with the highest execution speed (lines 20-25). Finally,
MCM-CMIN incorporates the chosen seed into the corpus
and updates the edge map and edge count to eliminate the
edges that have been covered by the selected seed (lines 29-
33). This process is reiterated until the edge map is empty
or the size of the seed corpus meets the user-predefined
threshold.

Consider the following example, there are five historical
fuzzing results and three edges, E1, E2, and E3. Edge E1
appears in only one campaign and in seeds S'1, .52, .57, .59,
and edge E?2 appears in three campaigns and is contained in
seeds S2, 54, 56,58, 510, while E3 appears in one cam-
paign and in seeds .S5,.59, S10. Therefore, MCM-CMIN
will calculate the appearance frequency of E1, E2, E3 as 1,
3 and 1, respectively. MCM-CMIN prioritizes E1 and E3
due to their lower appearance frequency. Then, it iterates
through the corresponding candidate seeds S'1,.52,.57,.59
of E1 and S5,.59,510 of E3 to choose the optimal edge
according to their debut time. Assuming that the debut time
of E1 is earlier, MCM-CMIN will choose the best seed from
seeds 55, .59, S'10. Suppose that S5 has the fastest execution
speed, then S5 will be incorporated into the corpus and
MCM-CMIN will remove the edges contained in S5 from
the edge map and edge count. Subsequently, it will select
E1 to repeat the above process and finally E2. AFL-CMIN’s
edge selection order will be E2, E1, and E3 due to their edge
frequency, decreasing the corpus quality when the corpus
size is limited.

First Author et al.: Preprint submitted to Elsevier

Page 6 of 14

Short Title of the Article

Algorithm 3: MCM-CMIN Seed Processing

Input: Historical corpora k, EdgeCount, EdgeMap, UserFixedNumber
Output: SeedCorpus (minimized seed corpus)
1 for EdgeMap # § do

2 EdgelnfoVec <~ NULL
3 FastSpeed < INT_MAX, FastSeed < NULL
4 /I Step1: choose the optimal edge based on edge appearance
frequency and debut time
5 for [EdgelD,EdgeFreq]e EdgeCount do
6 SeedsInfo « EdgeMap[EdgelD]
7 EdgeDebutTime « INT_MAX
8 for Seedinfo € SeedsInfo do
9 if RELATIVEID(SeedInfo.SeedID) < EdgeDebutTime
then
10 | EdgeDebutTime « RELATIVEID(SeedInfo.SeedID)
11 end
12 end
13 PairInfo < PAIR(EdgelD, (EdgeDebutTime, EdgeFreq))
14 EdgelnfoVec.PUSH(PairInfo)
15 end
16 EdgelnfoVec.SORT(EdgeFreq, EdgeDebutTime)
17 InterstingEdgeID « EdgelnfoVec[0].EdgelD
18 /I Step2: Select seed based on execution speed
19 CandidateSeeds < EdgeMap[InterstingEdgeID]
20 for SeedInfo € CandidateSeeds do
21 if Seedlnfo.SeedSpeed < FastSpeed then
22 FastSpeed < SeedInfo.SeedSpeed
23 FastSeed < SeedInfo
24 end
25 end
26 Seed « GETSEED(FastSeed.SeedID)
27 SeedCorpus.ADD(FastSeed)
28 /I Step3: Update the EdgeMap and EdgeCount
29 RemoveEdges <— SHOWMAP(FastSeed)
30 for SeedEdge € RemoveEdges do
31 EdgeMap.REMOVE(SeedEdge.EdgelD)
32 EdgeCount.REMOVE(SeedEdge.EdgeID)
33 end
34 if SeedCorpus.S1ZE() = UserFixedNumber then
3s | Break
36 end
37 end

5. Implementation of corpus minimization

We implement a prototype of MCM-CMIN and MCM-
OPT based on AFLplusplus-4.00c [13] and reuse some code
of OPTIMIN [19] to solve the seed selection problem. The
implementation has approximately 1,700 lines of C++ code
and we choose Z3Prover [11] to solve the SAT problem.

Corpus size. The size of the initial corpus is not a fixed
value and can be specified by the user. To establish a suitable
default corpus size, We conducted a survey and analysis of
15 academic fuzzers, as shown in table 2. Although some
fuzzers do not specify the size of the initial corpus, most
others typically set the initial corpus size to 100. Meanwhile,
in a widely used fuzzer benchmarking framework Fuzzbench
[36], 85% of its benchmark programs use the corpus with a
size smaller than 100. Furthermore, among the 135 projects
that provided initial corpus for fuzzing in Google’s OSS-
Fuzz, half of them also consist of less than 100 seeds.
Consequently, our decision to adopt a default corpus size of
100 for different corpus minimization tools is practical.

Clause weight. In MCM-OPT, we generate the seeds
clause and edges clause to solve the satiftifity problem. For
every seed, we use the default soft clause weight of one,
which means the solver gets an instruction that if the solution
does not include this seed, it will make a loss of one. For the
edges clause, edge appearance frequency smaller than half

Table 2

Initial corpus size of academic fuzzers. We adopt the categories
and notation used by Klees et al. [23] and Herrera et al.
[19]: R means randomly sampled seeds; M means manually
constructed seeds; G means automatically generated seed; V
means the paper assumes the existence of valid seed(s), but
with unknown provenance; V* means valid seed(s) with known
provenance.

Paper Seed Size
SNPSfuzzer [27] V -
DARWIN [21] V* -

EMS [33] R/V* 100
MOPT [32] R 100
Nezha [44] R 100
Coverset [47] R 100
CollAFL [16] V* -
T-fuzz [43] V* -
Greyone [15] R 10
Tortoisefuzz [58] R 1
FUZZSIM [61] R/V 100
SYMFUZZ [7]] M 1
SeededFuzz [57] R/G 20
Skyfire [53] R/G 650
UniFuzz [28] V* 100

of the fuzzing campaigns is regarded as important, and other
edges are relevantly unimportant. To those important edges,
we set the weight of 100 to each edge clause, and the weight
of the other edge clause is the same as the seed clause.

6. Evaluation

We evaluate our proposed design by answering the fol-
lowing questions:

e RQI1. What is the impact of using historical fuzzing
results? (§6.3, §6.4)

e RQ2. Why does the performance of MCM differ from
other minimization tools? (§6.5)

e RQ3. What is the impact of using historical fuzzing
results to fuzz slightly changed programs? (§6.6)

6.1. Experiment Design

In this section, we first assess the effectiveness of MCM
in leveraging multiple historical fuzzing results to generate
the initial corpus. MCM should be able to cover discovered
execution paths and vulnerabilities in past historical fuzzing
campaigns as much as possible while triggering more new
paths and vulnerabilities. To evaluate this, we designed two
types of experiments (§6.3, §6.4), the first experiment com-
pares the fuzzing results using the corpus generated from
historical data against the original version, aiming to verify
that using historical fuzzing results to generate the initial
corpus can improve fuzzing efficiency. The second experi-
ment compares code coverage and vulnerability discovery
capabilities with AFL-CMIN and OPTIMIN, demonstrating
that MCM can effectively learn critical information across
different fuzzing campaigns and generate a high-quality
corpus.

First Author et al.: Preprint submitted to Elsevier

Page 7 of 14

Short Title of the Article

Table 3

The configuration of test programs.
Target Version Invocation Format
openssl openssl-1.1.1i .[server packet
readpng libpng-1.6.37 ./readpng png
exxfilt binutils-2.35.1 . /cxxfilt text
pdfimages xpdf-4.02 ./pdfimages @@ /dev/null pdf
libxml libxml2-v2.9.10 ./xmllint @@ xml
readelf binutils-2.35.1 ./readelf -a Q@ elf
infotocap ncurses-6.2 ./infotocap @@ text
tecpdump tepdump-4.9.3 . /tcpdump -ee -wv -nnr Q@ pcap
nm binutils-2.35.1 ./nm-new -A -a -| -S -s -C Q0@ elf
objdump binutils-2.35.1 ./objdump -xsSD @@ elf

In addition to the above experiments, we also compare
and analyze the initial corpus generated by MCM, AFL-
CMIN, and OPTIMIN against the original historical results
(§6.5). Specifically, We examine the size of the minimized
corpus produced by different tools to assess the compression
efficiency of different minimization methods. Furthermore,
We analyze the edge distribution within the generated cor-
pora when the corpus size is limited, aiming to understand
how edge appearance frequency impacts the quality and
effectiveness of the corpus.

The last experiment (§6.6) aims to verify the effec-
tiveness of reusing historical fuzzing results within con-
tinuous integration. To simulate this scenario, we selected
four distinct programs, each with five different commits and
versions, to ensure the observed discrepancies and generate
historical fuzzing results. By reusing these fuzzing results,
the newly generated corpus by MCM should be able to
enhance fuzzing efficiency in the next commit or version,
demonstrating its adaptability in a continuous integration
workflow.

6.2. Experiment configuration

Platform. All the experiments were conducted on a
64-bit machine, and each fuzzing evaluation was executed
with one CPU core of 2.40GHz E5-2640 V4. The operating
system of the machine is Ubuntu 20.04 LTS. We run all
target programs for 24 hours and repeat each experiment five
times following the instruction of Klees et al. [23].

Target programs. We evaluate MCM-CMIN and MCM-
OPT on 10 open-source Linux programs as shown in Table 3.
The reason for choosing these programs is that most of them
were evaluated by existing AFL-type fuzzers [23, 28, 32].
Among them, pdfimages, pdftotext, and libxml are executed
with dictionaries provided by AFL++ [13].

Baseline. We compare MCM-CMIN and MCM-OPT
with two state-of-art corpus minimization tools, OPTIMIN
[19], AFL-CMIN [64], and with the original fuzzing results.
Since all the OPTIMIN, MCM-OPT, and MCM-CMIN do
not take into account edge frequency, we also use AFL-
CMIN edge only (AFL-CMIN-E) as another baseline.

Historical fuzzing results. We executed the aforemen-
tioned 10 open-source programs on the same platforms for
24 hours. The initial corpus consisted of 20 seeds, which
were collected from MOPT [32] or the Internet and de-
duplicated with AFL-CMIN, following the best practice.

Every fuzzing process was repeated five times, and out-
puts obtained from these repetitions are treated as historical
fuzzing results. Meanwhile, to overcome the limitations of
the SAT solver, we initially simplify the result of each
historical fuzzing result using OPTIMIN before conducting
OPTIMIN and MCM-OPT.

Additionally, we selected four distinct program types,
each with five different versions and five different commits,
and subjected them to a 24-hour fuzzing process using the
corresponding set of 20 initial seeds. This is done to validate
the applicability of historical fuzzing results for programs
with slight modifications.

Seed sets. Based on history fuzzing results, we use
different corpus minimization tools to generate the initial
seed corpus. Since we use the default corpus size of 100,
we choose 80 seeds randomly from OPTIMIN and MCM-
OPT since they treat every chosen seed equally. For the other
three minimization methods, we choose the best 80 seeds
from their generated corpus. All the corpus will incorporate
the initial 20 seeds together as the seed corpus. Thus, each
fuzzer will employ the same size of input files as the initial
seeds corpus to fuzz the same program.

Evaluation metrics. We assess the performance of five
corpus minimization methods from two metrics. The first
metric pertains to branch coverage and corpus analysis,
measuring the corpus generated by different minimization
methods and their performance. Then vulnerability analysis
is employed to ensure that all the crashes found in the histor-
ical fuzzing results are also present in the newly generated
corpus.

6.3. Coverage analysis

As depicted in Figure 4 and Table 4, using historical
fuzzing results to generate the initial corpus with differ-
ent minimization tools can improve the fuzzing efficiency
from 1% to 14.3% compared to the original fuzzing results.
Besides, MCM-CMIN demonstrates superior performance
compared to the other four minimization methods on 6 of
10 programs. Additionally, MCM-OPT outperforms other
minimization tools in the case of nm and objdump. This is
mainly in these two programs the seeds selected by MCM-
OPT contain more edges whose appearance frequency is
three, which contributes more to path exploration than edges
whose appearance frequency is one and two. The appear-
ance frequency of an edge represents the number of times
this edge appears in different historical fuzzing campaigns.
For libpng and pdfimages, both MCM-OPT and MCM-
CMIN exhibit a slight disadvantage when compared to AFL-
CMIN-E. Since the original coverage of libpng reaches the
limit, all the fuzzing results using corpora generated by
different minimization methods are very close to each other.
In pdfimages, we suspect some special seeds can have a very
large impact on the quality of the entire corpus, and the seeds
may have little relation with edge appearance frequency.

Due to the random selection of seeds from the corpus
generated by OPTIMIN, it produces a negative growth in
comparison to the historical fuzzing results in four of the

First Author et al.: Preprint submitted to Elsevier

Page 8 of 14

Short Title of the Article

7200 1250

#o7
1225 i
Vi

7050

3
1200
6900

6750

----- R WO Eak rthe Bt Tob St T g

2100

1800

1500

1200

=S
&4
o

5600 4 .

4800 e

5200 g/e*
1/

4000 4, f
i 4800

3200 o 4400 =

4000

T T 1 L T T T T T 1
16 20 24 0 4 8 12 16 20 24

libpng exxfilt

T 6000 B »

e =

5000

4000

3000

2000

0 4 8 12 16 20 24 0 4 8

1600 6000

1400 | - P
: 45004 L
1200 2

1000

5400

¥ 4800

4200

3600

3000

infotocap

=@~ Original
AFL-CMIN - @+ OPTIMIN

=+ AFL-CMIN-E =M+ MCM_CMIN

=<4 MCM_OPT

L T T
0 4 8

T T 1
16 20 24

objdump

Fig. 4: Original branch coverage and average branch coverage that uses corpora generated by five different minimization methods

over five campaigns in 24 hours.

programs. Meanwhile, since the rare edges are relatively
scattered among different seeds in tcpdump, AFL-CMIN,
and AFL-CMIN-E fail to select the most important part
of the fuzzing results, leading to the decrease of corpus
quality, therefore also producing a negative growth. MCM-
CMIN excels in learning the relationship across different
fuzzing campaigns, enabling it to select more efficient seeds
compared to AFL-CMIN and AFL-CMIN-E, thus achieving
a better performance. MCM-CMIN delivers similar or better
performance in the other programs by learning the rela-
tionship across different fuzzing campaigns and selecting
seeds that execute faster and appear later, thus reducing the
additional cost to trigger special branches.

In summary, MCM-CMIN and MCM-OPT can select
more efficient seeds from different fuzzing results, and the
performance of MCM-CMIN and MCM-OPT is better than
AFL-CMIN, AFL-CMIN-E, and OPTIMIN.

6.4. Vulnerabilities analysis

We evaluated the performance of different initial corpora
generated by different minimization methods in discovering
vulnerabilities. As is shown in Table 4, indicates that three
programs experienced crashes in the historical fuzzing re-
sults. Since our research does not address runtime mutation

strategies and seed selection, our focus lies in determining
whether the different methods can identify vulnerabilities
that align with or surpass the results obtained from historical
data. The crashes observed in the historical fuzzing results
can also be triggered by the new corpora generated by the
different minimization tools.

We confirm that all of our found unique crashes have
already been reported. For example, the crash of readelf has
been reported by others as CVE-2021-20294 [37], which
happens on line 12096 of binutils/readel f .c. The utiliza-
tion of minimization tools enables the generation of an
effective corpus since all the crashes’ corresponding edges
are rare. Thus ensuring that all previously discovered crashes
will be triggered in subsequent fuzzing campaigns.

6.5. Initial corpus analysis

Table 5 displays the corpus size generated by five dif-
ferent minimization tools on 10 target programs when the
corpus size is not limited to a given number. Due to the
limitation of the SAT solver, the history results used by
OPTIMIN and MCM-OPT are simplified before the mini-
mization process. Meanwhile, since OPTIMIN and MCM-
OPT use SAT solvers to get a globally optimal solution,

First Author et al.: Preprint submitted to Elsevier

Page 9 of 14

Short Title of the Article

Table 4

The average branch coverage of historical fuzzing results referred to as Original branch coverage and average coverage of five
corpus minimization methods running 24 hours on 10 target programs.

Original branch coverage

Branch coverage & unique crashes

Targets & unique crashes OPTIMIN AFL-CMIN AFL-CMIN-E MCM-OPT MCM-CMIN
openssl 7147 / O 7179 / 0 7216 / 0 7217 / 0 7213 / 0 7238 / 0
libpng 1237 /0 1248 / 0 1246 / 0 1251 /0 1245 / 0 1248 / 0
exxfilt 2337 /0 2441 /0 2484 /0 2493 / 0 2487 / 0 2494 / 0
pdfimages 4819 / 1 5178 / 1 5064 / 1 5453 / 1 5319 /1 5265 / 1
libxml 5616 / 0 5676 /0 5772 /0 5728 / 0 5775 / 0 5786 / 0
readelf 5802 / 1 5759 /1 5886 / 1 6014 / 1 6014 / 1 6081 / 1
infotocap 1700 / 1 1635 /1 1733/ 1 1734 / 1 1729 / 1 1739 / 1
tepdump 6307 / 0 6236 /0 6120 /0 6302 / 0 6368 / 0 7207 / 0
nm 5062 / 0 5048 /0 5230 /0 5234 / 0 5238 / 0 5156 / 0
objdump 6204 / 0 6252 /0 6271 /0 6238 / 0 6309 / 0 6230 / 0
Table 5 whose edge appearance frequency is one. That is because

Corpus size minimized on historical results.

Target ORIGINAL OPTIMIN AFL-CMIN AFL-CMIN-E MCM-OPT MCM-CMIN

openss| 8760 240 776 249 31 309
libpng 7325 144 820 227 6 240
exxfilt 43738 1799 4199 668 113 549
pdfimages 36959 862 5317 975 324 1196
libxml 45255 578 4225 885 122 938
readelf 89132 1028 9136 2158 222 1851
infotocap 27549 170 2225 331 29 342
tcpdump 38174 3318 7643 3954 878 4077
nm 65658 821 4288 1034 308 1166
objdump 80242 845 5016 1110 302 1266

the corpora generated by these two methods are relatively
smaller.

Across all the minimization methods, the corpora gen-
erated by MCM-OPT are significantly smaller than other
minimization methods. This can partly be attributed to the
fact that four minimization methods except AFL-CMIN do
not consider edge hit count in seed selection. Additionally,
MCM-OPT prioritizes the least number of seeds that contain
as many rare edges as possible, which further reduces the
size of the corpus. Compared to OPTIMIN, MCM-OPT only
considers the rare edges that appear in different campaigns
and disregards the relatively frequent ones. As a result,
MCM-OPT generates smaller corpora.

Since AFL-CMIN differentiates edges based on the edge
hit count, its generated corpora are larger than the other
four methods. When compared to AFL-CMIN-E, most of
the corpora generated by MCM-CMIN are slightly larger.
This can be attributed to the fact that MCM-CMIN takes into
account the relation of edge appearance frequency across
different fuzzing campaigns, which makes its corpus size a
bit larger.

We further analyze the edge distribution of the corpora
generated by different minimization methods when the cor-
pus size is limited, as shown in Table 6, to learn the impact of
edge appearance frequency on the corpus. Since OPTIMIN
treats each seed equally and 80 seeds are randomly selected
from the generated corpus, making corpus contains fewer
rare edges than the other four methods. When comparing
MCM-CMIN with AFL-CMIN and AFL-CMIN-E, it be-
comes evident that MCM-CMIN contains more rare edges

MCM-CMIN prioritizes edges with smaller appearance fre-
quency, thereby retaining seeds associated with these spe-
cific edges. Although MCM-OPT exhibits fewer edges with
the appearance frequency of one, it preserves edge appear-
ance frequency with a balanced distribution, encompassing
more edges whose occurrences of two or three.

By analyzing the edge distribution of the generated cor-
pus as well as their corresponding fuzz testing results, we can
conclude that using edge appearance frequency to help seed
selection from historical corpora can generate a high-quality
initial corpus.

6.6. History results on slightly changed programs

To verify the efficiency of reusing historical fuzzing
results in continuous integration, where the programs under
testing are slightly changed in different fuzzing campaigns
due to continuous software development, we selected four
distinct programs that employ various input types. Addition-
ally, we focused on five different commits or five consec-
utive versions to ensure the observed discrepancies and to
simulate the continuously evolving programs. We obtained
historical fuzzing results by using the initial 20 seeds to fuzz
the programs of their five different commits or versions (as is
shown in Table 8) each once. Thus, we still get five historical
corpora for each target. Based on the generated historical
fuzzing results, we followed the experiment configuration to
get the corresponding seed sets. To verify the effectiveness
of using historical fuzzing results, we chose the next commit
or version as the target program and compared using the ini-
tial 20 seeds as a corpus with employing MCM’s generated
corpus.

The result is shown in Table 7, Original is the average
branch coverage generated by using the initial 20 seeds.
The performance of MCM-CMIN and MCM-OPT can effec-
tively maintain branch coverage that aligns with the original
corpus while exhibiting improvements. By MCM’s using
historical fuzzing results, noteworthy improvements were
observed on tcpdump in terms of different commits, while
in fields of different versions, better performance can be
achieved on cxxfilt and pdfimages. That means leveraging

First Author et al.: Preprint submitted to Elsevier

Page 10 of 14

Table 6

Short Title of the Article

The distribution of edges within the generated corpora. Each edge distribution comprises three columns, denoting edges that

appear across distinct fuzzing campaigns with frequencies of one, two, and three, respectively.

New generated corpus distribution

Targets Historical corpora distribution oy AFLCMIN AFLCMINE MCM-OPT MCM-CMIN
openssl 32/ 22/ 39 12/10/6 28/2/27 29/15/21 30/22/39 32/22/39
libpng 7/2/1 7/2/1 4/0/0 7/2/1 7/2/1 7/2/1
oxfilt 29 / 156 / 85 0/7/6 28/60/13 29/100/33 18/131/63 29/141/16
pdfimages 387 / 262 / 401 9/31/165 99/26/0 132/31/47 79/74/232 173/30/ 46
libxml 94 /97 / 80 14/4/1 79/37/33 45/28/46 55/69/47 94 /74 /33
readelf 101 / 120 / 274 0/0/0 83/8 /52 72/44/35 18 /51 /111 101 /13 /63
infotocap 20 /23 /7 9/11/0 18/9/3 13/20/ 4 19/23/7 20/23/7
tcpdump 1464 / 1037 / 647 0/0/2 138/36/2 134/36/2 63/31/63 322/19/7
nm 341 / 231 / 179 0/0/1 148 /46 /15 119/66/17 65/41/45 221/59 /22
objdump 213 / 171 / 201 0/2/0 129 /23/29 128/58/34 35/19/52 157 /30/31
Table 7 historical fuzzing results can lead to significant improve-

Branch coverage of history fuzzing result on new program
version.

Target Type Original MCM-CMIN MCM-OPT
Coverage Impr Coverage Impr

libpng-36bd1bb C 849 850 +0.11% 850 +0.11%
openssl-5d91c74 C 6498 6594 +1.48% 6593 +1.46%
libxm|-664f881 C 5628 5757 +2.29% 5774 +2.59%
tcpdump-211124b C 6066 6901 +13.77% 6972 +14.94%
cxxfilt-2.36 Vv 3029 3190 +5.32% 3184 +5.12%
openssl-1.1.1j \ 6475 6599 +1.92% 6585 +1.68%
libpng-1.6.38 \Y 852 861 +1.06% 862 +1.17%
pdfimages-4.04 \% 5330 5823 +9.25% 5343 +0.24%

fuzzing history to generate a new corpus ensures the perfor-
mance of fuzzing in slightly changed programs. Therefore,
utilizing historical results in programs with minor changes
is practical.

7. Discussions and Limitations

7.1. Discussions

As demonstrated in the experiments, the corpus gener-
ated using historical fuzzing results can significantly im-
prove fuzzing efficiency compared to the original corpus,
increasing code coverage from 1% to 14.3%. This improve-
ment is particularly notable when the edge needs to be trig-
gered by different seeds, as using historical fuzzing results
to create the initial corpus can greatly enhance coverage.

Although using historical fuzzing results can improve
fuzzing efficiency, the choice of minimization tools plays a
crucial role. Neither OPTIMIN nor AFL-CMIN can effec-
tively learn relationships, and this limitation is addressed by
MCM by computing edge appearance frequency across dif-
ferent fuzzing campaigns. Experiments show that MCM can
retain more unique edges, enabling it to perform better than
the other two tools. MCM enables users to save the results of
each fuzzing campaign and reuse them in subsequent runs.
Additionally, users can exchange fuzzing results with each
other, using them as shared seeds for convenience.

We use slightly modified programs to simulate the OSS-
FUZZ or CI scenario. The experiments show that using

ments, indicating that utilizing historical results in such CI
scenarios can be practical.

7.2. Limitations

Since code coverage is just one indicator of fuzzing per-
formance, our work still has some limitations. Many studies
[5, 3, 12, 39] have suggested that there is a need to consider
state coverage information. Since many vulnerabilities have
a strong relation with specific states, only after both the edge
and state meet the specific condition that the vulnerabilities
can be triggered. Therefore, considering state information to
aid in seed selection can effectively improve the quality of
the initial corpus. After identifying some important states,
we can extend MCM'’s seed selection factors to maintain
these states to improve the corpus quality.

When reusing historical fuzzing results to generate the
initial corpus for directed fuzzing [6, 30, 17], using just edge
information to choose seeds is not enough. Since the purpose
of directed fuzzing is to test specific code areas, considering
the information of reaching a given set of target program
locations is a greater alternative. We can extend MCM
with taint analysis to find edges that correspond to specific
program locations. After finding those special edges, MCM
can further evaluate and preserve these edges to improve the
relevance of the initial corpus to target program locations.

Additionally, we use slightly modified programs to simu-
late the CI scenario. The changes between different versions
of the programs are quite small. However, if a user runs
multiple fuzzing campaigns with different versions whose
differences are quite large, reusing their results may not be
effective, potentially threatening the validity of our work.

8. Related work

8.1. Initial seed corpus

Several papers [23, 31, 68, 19] underscore the crucial
role of the initial corpus in determining the efficiency of
fuzzing. A high-quality corpus effectively generates a broad
range of observable behaviors in the target, reducing the
effort required by the fuzzer to reach those areas. Enhancing

First Author et al.: Preprint submitted to Elsevier

Page 11 of 14

Table 8
The branch coverage of history program.

Short Title of the Article

Type Target Branch Coverage
. 2.33.1 2.34 2.35 2.35.1 2.35.2
cxxfilt
2277 2376 2326 2326 2444
1.1.1e 1.1.1f 1.1.1g 1.1.1h 1.1.1i
. openssl|
Version 6527 6475 6465 6479 6576
. 1.6.33 1.6.34 1.6.35 1.6.36 1.6.37
libpng
850 851 851 851 866
. 4.00 4.01 4.01.1 4.02 4.03
pdfimages
4060 5117 4128 4901 5305
libon eb67672 | 6¢c6f7dl | c4bd41l | 763c77e | 5f5f98a
pne 849 849 848 850 849
openss| d9d838 | ba4c89a | 32f7f60 | 9d86884 | 4f850d7
Commit | P 6574 | 6518 6509 6486 6506
libxml c103566 | 5eeb9d5 | 5f1f455 | 0b79359 | eeeldd5
5580 5579 5637 5631 5676
aa3eb4f | 12f66f6 | 6510207 | 9ba9138 | af2cf04
tcpdump
6371 5825 6179 6213 6300

the quality of the initial corpus can effectively improve the
fuzz testing performance [19].

One approach to enhance the quality of the initial corpus
involves integrating seed generators with other technologies,
such as symbolic execution and machine learning algo-
rithms. By utilizing symbolic execution, fuzzers can com-
pute values that fulfill conditions or complex checks, thus
improving the quality of seeds and enabling the detection
of deeper code branches [51, 56, 42]. HEALER dynami-
cally analyzes minimized test cases to establish relationships
among them, leveraging these learned relations to guide
input generation and improve the quality of test cases [52].
Lyu et al. proposed an unsupervised learning system named
SmartSeed to learn and generate valuable input seed files for
fuzzing [31]. Chen et al. used Recurrent Neural Networks
to discover the correlation of specific pdf files with the
target programs and further generate new seed files that more
likely explore new paths [10]. Superion [54], SoFi [18] and
PolyGlot [9] select JavaScript code crawled from Github
repositories as seed corpus to drive the fuzzing process.
Wen et al. evaluated the impact of seed selection on fuzzing
effectiveness and found that the corpus with code features
can lead fuzzers to achieve better results [60], which is
consistent with our study. Zhi et al. conducted a systematic
study to understand the impact of initial seed inputs on DL
testing and proposed an SOO-based selection method to
construct the optimal corpus, thereby enhancing DL testing
with respect to specific testing goals [67].

The selection of a subset of inputs from a large collection
corpus using various strategies is another approach to en-
hancing the quality of the initial corpus. Abdelnur et al. were
the first to formally define the corpus minimization problem
as an instance of the minimum set cover problem, and they
employed a greedy algorithm to resolve this issue [1]. Rebert

et al. proposed a method called MINSET, which generates
a small subset considering factors such as execution time
or file size [47]. AFL-CMIN utilizes AFL’s edge coverage
notion to select the smallest seed that covers a specific
edge count from the collection corpus, following a greedy
minimization approach [64]. MINTS [20] and Nemo [29]
both use integer linear programming solvers to perform test-
suite minimization. Additionally, OPTIMIN [19] encodes
the subset selection as a maximum satisfiability problem
and employs the EvalMaxSAT solver to address corpus
minimization. Furthermore, MoonShine [41] uses system
call traces of real-world programs to distill them into a
minimal test case that still achieves 86 percent of the pre-
distilled coverage.

MCM is orthogonal to the approaches that involve in-
tegrating seed generators with other technologies. It simply
learns the edge relation across the different historical corpus
to guide seed selection. Similar to existing works, MCM tries
to select a more effective subset of the collected corpus to
enhance the quality of the initial corpus, but it first proposes
to consider the historical fuzzing results as the collected
corpus to generate a high-quality corpus.

8.2. Using history information

In recent years, several studies have focused on leverag-
ing historical information in the field of fuzzing. This his-
torical data contains valuable pre-execution details that can
be harnessed for further utilization. M Woo et al. proposed a
simulation-based approach to replay the events of previous
fuzzing and trained a better scheduling algorithm [61]. Lee
et al. utilized historical datasets to create a neural network
language model-guided fuzzer called Montage, capable of
generating valid JavaScript tests [25]. Lyu et al. introduced
a mutation model that captures mutation strategies from both

First Author et al.: Preprint submitted to Elsevier

Page 12 of 14

Short Title of the Article

intra- and inter-trial histories and presented a novel history-
driven mutation framework known as EMS, designed to
enhance mutation efficiency [33]. Furthermore, Rajpal et al.
presented a machine-learning technique that employs neural
networks to learn patterns in the input files from previous
fuzzing explorations, thereby guiding future fuzzing endeav-
ors [46]. Klooster et al. investigated the effectiveness of
using continuous fuzzing in CI/CD pipelines [24] and CID-
Fuzz [66] proposed using historical information in the CI
process to perform differential analysis, addressing the issue
of frequent code changes and improving fuzzing efficiency.

The techniques mentioned above share a common theme
of utilizing historical fuzzing results. While our approach
also incorporates historical results, we place greater empha-
sis on learning the relationships across different historical
results to enable a more effective selection of meaningful
seeds.

9. Conclusion

For programs deployed on the OSS-FUZZ or during
the software integration development cycle, fuzz testing
needs to be conducted multiple times. That means multiple
historical fuzzing results are generated for every program,
extracting useful seeds from these historical results can help
explore the program more efficiently in later fuzz testing.
In this paper, we propose to reuse historical fuzzing results
and present a minimization tool called MCM to generate a
high-quality corpus. MCM efficiently learns edge relations
across different fuzzing campaigns and selects useful seeds
from the historical fuzzing corpora. We have illustrated its
effectiveness by comparing MCM with other state-of-the-
art minimization tools and the original historical results.
The results show that using historical fuzzing results can
effectively improve the fuzzing performance.

References

[1] Abdelnur, H., Lucangeli, O.J., Festor, O., et al., 2010.
fuzzing: Evaluation & feedback. Ph.D. thesis. INRIA.

[2] Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J., 2017. Agile
software development methods: Review and analysis. arXiv preprint
arXiv:1709.08439 .

[3] Aschermann, C., Schumilo, S., Abbasi, A., Holz, T., 2020. Tjon:
Exploring deep state spaces via fuzzing, in: 2020 IEEE Symposium
on Security and Privacy (SP), IEEE. pp. 1597-1612.

[4] Avellaneda, F., 2020. A short description of the solver evalmaxsat.
MaxSAT Evaluation 8.

[5] Ba,lJ., Bohme, M., Mirzamomen, Z., Roychoudhury, A., 2022. State-
ful greybox fuzzing, in: 31st USENIX Security Symposium (USENIX
Security 22), USENIX Association, Boston, MA. pp. 3255-
3272. URL: https://www.usenix.org/conference/usenixsecurity22/

Spectral

presentation/ba.

[6] Bohme, M., Pham, V.T., Nguyen, M.D., Roychoudhury, A., 2017.
Directed greybox fuzzing, in: Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security, pp. 2329—
2344.

[7]1 Cha,S.K., Woo, M., Brumley, D., 2015. Program-adaptive mutational
fuzzing, in: 2015 IEEE Symposium on Security and Privacy, IEEE.
pp. 725-741.

[8] Chen, C., Cui, B.,Ma,J., Wu,R., Guo, J., Liu, W., 2018. A systematic
review of fuzzing techniques. Computers & Security 75, 118-137.

[9] Chen, Y., Zhong, R., Hu, H., Zhang, H., Yang, Y., Wu, D., Lee, W.,
2021. One engine to fuzz’em all: Generic language processor testing
with semantic validation, in: 2021 IEEE Symposium on Security and
Privacy (SP), IEEE. pp. 642-658.

[10] Cheng, L., Zhang, Y., Zhang, Y., Wu, C., Li, Z., Fu, Y., Li, H., 2019.
Optimizing seed inputs in fuzzing with machine learning, in: 2019
IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), IEEE. pp. 244-245.

[11] De Moura, L., Bjgrner, N., 2008. Z3: An efficient smt solver, in: In-
ternational conference on Tools and Algorithms for the Construction
and Analysis of Systems, Springer. pp. 337-340.

[12] Fioraldi, A., D’Elia, D.C., Balzarotti, D., 2021. The use of likely
invariants as feedback for fuzzers, in: 30th USENIX Security Sym-
posium (USENIX Security 21), pp. 2829-2846.

[13] Fioraldi, A., Maier, D., Eifeldt, H., Heuse, M., 2020. {AFL++}:
Combining incremental steps of fuzzing research, in: 14th USENIX
Workshop on Offensive Technologies (WOOT 20).

[14] Fowler, M., Foemmel, M., 2006. Continuous integration.

[15] Gan, S., Zhang, C., Chen, P., Zhao, B., Qin, X., Wu, D., Chen, Z.,
2020. {GREYONE}: Data flow sensitive fuzzing, in: 29th USENIX
security symposium (USENIX Security 20), pp. 2577-2594.

[16] Gan, S., Zhang, C., Qin, X., Tu, X., Li, K., Pei, Z., Chen, Z., 2018.
Collafl: Path sensitive fuzzing, in: 2018 IEEE Symposium on Security
and Privacy (SP), IEEE. pp. 679-696.

[17] Ganesh, V., Leek, T., Rinard, M., 2009. Taint-based directed whitebox
fuzzing, in: 2009 IEEE 31st International Conference on Software
Engineering, IEEE. pp. 474-484.

[18] He, X., Xie, X.,Li, Y., Sun,J.,Li, F., Zou, W., Liu, Y., Yu, L., Zhou, J.,
Shi, W., etal., 2021. Sofi: Reflection-augmented fuzzing for javascript
engines, in: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2229-2242.

[19] Herrera, A., Gunadi, H., Magrath, S., Norrish, M., Payer, M., Hosk-
ing, A.L.,2021. Seed selection for successful fuzzing, in: Proceedings
of the 30th ACM SIGSOFT international symposium on software
testing and analysis, pp. 230-243.

[20] Hsu, H.Y., Orso, A., 2009. Mints: A general framework and tool for
supporting test-suite minimization, in: 2009 IEEE 31st international
conference on software engineering, IEEE. pp. 419-429.

[21] Jauernig, P., Jakobovic, D., Picek, S., Stapf, E., Sadeghi, A.R., 2022.
Darwin: Survival of the fittest fuzzing mutators. arXiv preprint
arXiv:2210.11783 .

[22] Kaelbling, L.P., Littman, M.L., Moore, A.W., 1996. Reinforcement
learning: A survey. Journal of artificial intelligence research 4, 237—
285.

[23] Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M., 2018. Evaluating
fuzz testing, in: Proceedings of the 2018 ACM SIGSAC conference
on computer and communications security, pp. 2123-2138.

[24] Klooster, T., Turkmen, F., Broenink, G., Ten Hove, R., Bohme, M.,
2023. Continuous fuzzing: a study of the effectiveness and scalability
of fuzzing in ci/cd pipelines, in: 2023 IEEE/ACM International Work-
shop on Search-Based and Fuzz Testing (SBFT), IEEE. pp. 25-32.

[25] Lee, S., Han, H., Cha, S.K., Son, S., 2020. Montage: A neural net-
work language {Model-Guided}{JavaScript} engine fuzzer, in: 29th
USENIX Security Symposium (USENIX Security 20), pp. 2613—
2630.

[26] Li, C.M., Manya, F., 2021. Maxsat, hard and soft constraints, in:
Handbook of satisfiability. IOS Press, pp. 903-927.

[27] Li, J., Li, S., Sun, G., Chen, T., Yu, H., 2022. Snpsfuzzer: A fast
greybox fuzzer for stateful network protocols using snapshots. IEEE
Transactions on Information Forensics and Security 17, 2673-2687.

[28] Li, Y., Ji, S., Chen, Y., Liang, S., Lee, W.H., Chen, Y., Lyu, C., Wu,
C., Beyah, R., Cheng, P, et al., 2021. {UNIFUZZ}: A holistic and
pragmatic {Metrics-Driven} platform for evaluating fuzzers, in: 30th
USENIX Security Symposium (USENIX Security 21), pp. 2777-
2794.

[29] Lin, J.W., Jabbarvand, R., Garcia, J., Malek, S., 2018. Nemo: Multi-
criteria test-suite minimization with integer nonlinear programming,
in: Proceedings of the 40th International Conference on Software

First Author et al.: Preprint submitted to Elsevier

Page 13 of 14

https://www.usenix.org/conference/usenixsecurity22/presentation/ba
https://www.usenix.org/conference/usenixsecurity22/presentation/ba

(30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

(38]

(39]

(40]

(41]

[42]

(43]

[44]

[45]

[46]

[47]

(48]

[49]

(501

[51]

[52]

Short Title of the Article

Engineering, pp. 1039-1049.

Luo, C., Meng, W., Li, P, 2023. Selectfuzz: Efficient directed
fuzzing with selective path exploration, in: 2023 IEEE Symposium
on Security and Privacy (SP), IEEE. pp. 2693-2707.

Lyu, C., Ji, S., Li, Y., Zhou, J., Chen, J., Chen, J., 2018. Smartseed:
Smart seed generation for efficient fuzzing. arXiv:arXiv:1807.02606.
Lyu, C., Ji, S., Zhang, C., Li, Y., Lee, W.H., Song, Y., Beyah, R.,
2019. {MOPT}: Optimized mutation scheduling for fuzzers, in: 28th
USENIX Security Symposium (USENIX Security 19), pp. 1949—
1966.

Lyu, C., Ji, S., Zhang, X., Liang, H., Zhao, B., Lu, K., Beyah, R.,
2022. Ems: History-driven mutation for coverage-based fuzzing, in:
29th Annual Network and Distributed System Security Symposium.
https://dx. doi. org/10.14722/ndss.

Mallissery, S., Wu, Y.S., 2023. Demystify the fuzzing methods: A
comprehensive survey. ACM Computing Surveys 56, 1-38.

Manes, V.J., Han, H., Han, C., Cha, S.K., Egele, M., Schwartz, E.J.,
Woo, M., 2019. The art, science, and engineering of fuzzing: A
survey. IEEE Transactions on Software Engineering 47, 2312-2331.
Metzman, J., Szekeres, L., Simon, L., Sprabery, R., Arya, A., 2021.
Fuzzbench: an open fuzzer benchmarking platform and service, in:
Proceedings of the 29th ACM joint meeting on European software en-
gineering conference and symposium on the foundations of software
engineering, pp. 1393-1403.

Modra, 2020. Cve-2021-20294 patch.
bugzilla/show_bug.cgi?id=26929.
Mozilla, 2020. Fuzzing-test samples. https://firefox-source-docs.
mozilla.org/tools/fuzzing/index.html.

Natella, R., 2022. Stateafl: Greybox fuzzing for stateful network
servers. Empirical Software Engineering 27, 191.

Natella, R., Pham, V.T., 2021. Profuzzbench: A benchmark for
stateful protocol fuzzing, in: Proceedings of the 30th ACM SIGSOFT
international symposium on software testing and analysis, pp. 662—
665.

Pailoor, S., Aday, A.,Jana, S.,2018. {MoonShine}: Optimizing {OS}
fuzzer seed selection with trace distillation, in: 27th USENIX Security
Symposium (USENIX Security 18), pp. 729-743.

Pak, B.S., 2012. Hybrid fuzz testing: Discovering software bugs
via fuzzing and symbolic execution. School of Computer Science
Carnegie Mellon University .

Peng, H., Shoshitaishvili, Y., Payer, M., 2018. T-fuzz: fuzzing by
program transformation, in: 2018 IEEE Symposium on Security and
Privacy (SP), IEEE. pp. 697-710.

Petsios, T., Tang, A., Stolfo, S., Keromytis, A.D., Jana, S., 2017.
Nezha: Efficient domain-independent differential testing, in: 2017
IEEE Symposium on security and privacy (SP), IEEE. pp. 615-632.
Qin, S., Hu, F., Ma, Z., Zhao, B., Yin, T., Zhang, C., 2023. Nsfuzz:
Towards efficient and state-aware network service fuzzing. ACM
Transactions on Software Engineering and Methodology .

Rajpal, M., Blum, W., Singh, R., 2017. Not all bytes are equal: Neural
byte sieve for fuzzing. arXiv preprint arXiv:1711.04596 .

Rebert, A., Cha, S.K., Avgerinos, T., Foote, J., Warren, D., Grieco,
G., Brumley, D., 2014. Optimizing seed selection for fuzzing, in: 23rd
USENIX Security Symposium (USENIX Security 14), pp. 861-875.
Schumilo, S., Aschermann, C., Jemmett, A., Abbasi, A., Holz, T.,
2022. Nyx-net: network fuzzing with incremental snapshots, in:
Proceedings of the Seventeenth European Conference on Computer
Systems, pp. 166—180.

Serebryany, K., 2017. OSS-Fuzz - google’s continuous fuzzing
service for open source software, USENIX Association, Vancouver,
BC.

Shahrokni, A., Feldt, R., 2013. A systematic review of software
robustness. Information and Software Technology 55, 1-17.
Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J.,
Shoshitaishvili, Y., Kruegel, C., Vigna, G., 2016. Driller: Augmenting
fuzzing through selective symbolic execution., in: NDSS, pp. 1-16.
Sun, H., Shen, Y., Wang, C., Liu, J., Jiang, Y., Chen, T., Cui, A., 2021.
Healer: Relation learning guided kernel fuzzing, in: Proceedings of

https://sourceware.org/

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

the ACM SIGOPS 28th Symposium on Operating Systems Principles,
pp. 344-358.

Wang, J., Chen, B., Wei, L., Liu, Y., 2017. Skyfire: Data-driven seed
generation for fuzzing, in: 2017 IEEE Symposium on Security and
Privacy (SP), IEEE. pp. 579-594.

Wang, J., Chen, B., Wei, L., Liu, Y., 2019. Superion: Grammar-aware
greybox fuzzing, in: 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), IEEE. pp. 724-735.

Wang, J., Zhang, Z., Liu, S., Du, X., Chen, J., 2023. Fuzzjit: Oracle-
enhanced fuzzing for javascript engine jit compiler, in: USENIX
Security Symposium. USENIX.

Wang, T., Wei, T., Gu, G., Zou, W., 2011. Checksum-aware fuzzing
combined with dynamic taint analysis and symbolic execution. ACM
Transactions on Information and System Security (TISSEC) 14, 1-28.
Wang, W., Sun, H., Zeng, Q., 2016. Seededfuzz: Selecting and
generating seeds for directed fuzzing, in: 2016 10th International
Symposium on Theoretical Aspects of Software Engineering (TASE),
IEEE. pp. 49-56.

Wang, Y., Jia, X., Liu, Y., Zeng, K., Bao, T., Wu, D., Su, P., 2020. Not
all coverage measurements are equal: Fuzzing by coverage accounting
for input prioritization., in: NDSS.

Weiss, K., Khoshgoftaar, T.M., Wang, D., 2016. A survey of transfer
learning. Journal of Big data 3, 1-40.

Wen, M., Wang, Y., Xia, Y., Jin, H., 2023. Evaluating seed selection
for fuzzing javascript engines. Empirical Software Engineering 28,
133.

Woo, M., Cha, S.K., Gottlieb, S., Brumley, D., 2013. Scheduling
black-box mutational fuzzing, in: Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pp.
511-522.

Xu, W., Kashyap, S., Min, C., Kim, T., 2017. Designing new operating
primitives to improve fuzzing performance, in: Proceedings of the
2017 ACM SIGSAC conference on computer and communications
security, pp. 2313-2328.

Ye, A., Wang, L., Zhao, L., Ke, J., Wang, W., Liu, Q., 2021.
Rapidfuzz: Accelerating fuzzing via generative adversarial networks.
Neurocomputing 460, 195-204.

Zalewski, M., 2014. American fuzzy lop. http://lcamtuf.coredump.
cx/afl/.

Zeng, Y., Zhu, F., Zhang, S., Yang, Y., Yi, S., Pan, Y., Xie, G., Wu,
T., 2023. Dafuzz: data-aware fuzzing of in-memory data stores. Peer]J
Computer Science 9, e1592.

Zhang, J., Cui, Z., Chen, X., Yang, H., Zheng, L., Liu, J., 2023.
Cidfuzz: Fuzz testing for continuous integration. IET Software 17,
301-315.

Zhi, Y., Xie, X., Shen, C., Sun, J., Zhang, X., Guan, X., 2023. Seed
selection for testing deep neural networks. ACM Transactions on
Software Engineering and Methodology 33, 1-33.

Zhu, X., Wen, S., Camtepe, S., Xiang, Y., 2022. Fuzzing: a survey for
roadmap. ACM Computing Surveys (CSUR) 54, 1-36.

First Author et al.: Preprint submitted to Elsevier

Page 14 of 14

http://arxiv.org/abs/arXiv:1807.02606
https://sourceware.org/bugzilla/show_bug.cgi?id=26929
https://sourceware.org/bugzilla/show_bug.cgi?id=26929
https://firefox-source-docs.mozilla.org/tools/fuzzing/index.html
https://firefox-source-docs.mozilla.org/tools/fuzzing/index.html
 http://lcamtuf.coredump.cx/afl/
 http://lcamtuf.coredump.cx/afl/

