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HSPFuzzer: High-Speed Network Protocol Fuzzing
with Connection Reuse

Zhewei Xia, Yingpei Zeng, Xiangpu Song, Shanqing Guo, and Ting Wu

Abstract—Fuzzing is a fundamental technique for detect-
ing vulnerabilities in network protocols. However, existing ap-
proaches suffer from low fuzzing throughput caused by the
overhead associated with server under test (SUT) restarts and
connection setup. In this paper, we present HSPFuzzer, a High-
Speed Protocol Fuzzer that leverages connection reuse to reduce
SUT restarts and connection re-establishments. To enable effi-
cient connection reuse, it incorporates a prefix message identifica-
tion algorithm to determine the essential packets required within
a connection and a coverage monitoring mechanism to detect
abnormal execution states. Additionally, HSPFuzzer employs an
innovative message provision method that ensures input messages
are delivered to the SUT with minimal delay within the same con-
nection. HSPFuzzer also eliminates the need for manually imple-
menting message-splitting logic by connection reuse. We evaluate
HSPFuzzer on 12 widely used servers and experimental results
show that HSPFuzzer achieves fuzzing throughput 1062× faster
than AFLNet, whereas other state-of-the-art fuzzers, including
AFLNet, SnapFuzz, HNPFuzzer, and AFL++, achieve, at most, a
12× speedup over AFLNet. Furthermore, HSPFuzzer attains an
average code coverage increase of 25.1% compared to AFLNet,
while competing fuzzers achieve, at most, 2.13% more coverage.
Notably, HSPFuzzer also discovers more vulnerabilities, which
further proves its effectiveness.

Index Terms—Fuzzing, Network protocol, Connection reuse,
Vulnerability detection

I. INTRODUCTION

NETWORK security has become increasingly critical in
both the Internet and the Internet of Things (IoT).

The growing complexity of network protocols has introduced
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significant security challenges for protocol servers, and new
attack techniques continue to emerge, such as Heartbleed [1],
EternalBlue [2], and regreSSHion [3]. Traditional approaches,
including manual code review and security analysis, have
become insufficient in addressing these threats. As a result,
fuzz testing, especially grey-box fuzzing, has emerged as the
preferred method for security assessment due to its low cost
and high efficiency [4], [5], [6], [7], [8], [9].

Since mainstream fuzzers like AFL (American Fuzzy Lop)
are primarily designed for programs that process inputs from
files or the console [4], several specialized fuzzers have been
developed to target network protocols [10], [11], [12], [13],
[14], [15], [16], [17]. These fuzzers can identify messages
in fuzzing inputs and transmit them to the server under
test (SUT) via network sockets. For instance, AFLNet [10]
has demonstrated superior performance over AFLNwe [10]
and BooFuzz [18] in terms of code coverage and the num-
ber of detected vulnerabilities when fuzzing servers such as
LightFTP and Live555. SnapFuzz [12] enhances AFLNet by
introducing a smart deferred forkserver, while HNPFuzzer [17]
further optimizes AFLNet by leveraging shared memory and
persistent mode.

TABLE I
THE FUZZING THROUGHPUT (EXECS/S) AND REQUIREMENT OF FUZZERS.

AFLNET HNPFuzzer HSPFuzzer (ours)

Dnsmasq 6.82 32.55 10359.15
LightFTP 5.12 31.43 12058.14 1

Live555 12.16 14.07 824.40

Need Coding Yes Yes No
Need Source Code No Yes No
1 HSPFuzzer uses different (split) seeds in LightFTP.

However, existing network protocol fuzzers exhibit low
fuzzing throughput, limiting their ability to effectively explore
the SUT (Server Under Test). For example, when fuzzing
Dnsmasq, LightFTP, and Live555, AFLNet [10] achieves a
throughput of only 5∼12 executions per second as shown
in Table I. The latest fuzzer, HNPFuzzer [17], improves
throughput by up to six times but remains constrained to
approximately 30 executions per second. This throughput is
significantly lower than that of fuzzing conventional programs.
For example, based on our experience, AFL++ can reach over
10,000 executions per second when fuzzing over half of the
23 FuzzBench programs [19]. In addition, AFLNet and all its
variations require users to manually add code to split messages
within inputs [10], and some may require access to the SUT’s
source code [15], [16], [17].
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The low fuzzing throughput of network protocols is primar-
ily attributed to the significant overhead involved in providing
test inputs to the SUT, including server initialization, con-
nection establishment, and message transmission [10]. While
recent fuzzers [12], [17] have made progress in reducing the
overhead associated with server initialization and message
transmission, they largely overlook the cost of connection
establishment, which, according to our measurements, can
be as high as 779.45% of the actual SUT processing time.
However, we argue that reconnecting to the SUT for every
input is unnecessary. For instance, in the case of an FTP (File
Transfer Protocol) server, once authentication is successfully
completed, subsequent commands such as LIST, PWD, and
STAT can be executed within the same connection without
requiring re-establishment [20].

In this paper, we present HSPFuzzer, a high-speed protocol
fuzzer based on the novel concept of connection reuse. Con-
nection reuse enables multiple fuzzing inputs to be transmitted
within the same connection to the SUT, thereby eliminating
the unnecessary overhead associated with server restarts and
connection establishment. This approach can be considered
a more advanced form of persistent mode, which persists
the connection rather than merely persisting the SUT [12],
[17]. Moreover, connection reuse does not introduce false
positives in vulnerability detection, as real-world attackers
can also reuse connections. Connection reuse eliminates the
need for writing code for message splitting as well with
special seed preparation. To enable effective connection reuse,
HSPFuzzer integrates a prefix message identification algorithm
to determine and transmit the necessary messages for estab-
lishing a new connection, along with a coverage monitoring
mechanism to detect abnormal execution states. Additionally,
HSPFuzzer employs a message provision method to timely
deliver messages to the SUT while discarding unnecessary
reply messages, further optimizing fuzzing efficiency.

We implement a prototype of HSPFuzzer and compare it
against state-of-the-art fuzzers, including AFLNet, AFLNwe,
SnapFuzz, HNPFuzzer, and AFL++ (with preeny/desock),
across 12 widely used servers. Experimental results demon-
strate that HSPFuzzer achieves a 1062.06× speedup over
AFLNet, whereas AFLNwe, SnapFuzz, HNPFuzzer, and
AFL++ only achieve 1.68×, 7.82×, 12.13×, and 4.06× im-
provements over AFLNet, respectively. Furthermore, HSP-
Fuzzer enhances AFLNet’s code coverage by 25.10%, while
the other fuzzers exhibit improvements of -12.57%, 0.58%,
2.13%, and -32.46%, respectively. Additional experiments
confirm that connections are effectively reused for multi-
ple inputs in SUTs. Interestingly, we find that connection
reuse not only preserves the fuzzing capability of inputs but
may even enhance it. Moreover, our evaluation validates the
effectiveness of prefix message identification and coverage
monitoring. During testing, HSPFuzzer successfully identified
14 vulnerabilities, surpassing the second-best fuzzer by four
additional findings. The prototype of HSPFuzzer will be open-
sourced for research after paper publication at https://github.
com/hspfuzzer.

The remainder of this paper is structured as follows. Sec-
tion II discusses the limitations of existing approaches and
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Fig. 1. The breakdown of fuzzing time for processing a single input across
different fuzzers (assuming the input contains two messages).

provides an overview of our methodology. Section III details
the design and implementation of HSPFuzzer. In Section IV,
we present and analyze our experimental results. Section V
further examines our approach and its limitations. Section VI
reviews related work. Finally, we conclude in Section VII.

II. PROBLEM AND APPROACH OVERVIEW

A. Network protocol fuzzing

Network protocol implementations (i.e., servers) exhibit dis-
tinct interaction patterns compared to conventional (ordinary)
programs or libraries, such as tcpdump and libpng [7]. First,
servers receive inputs via network sockets rather than from
files or the console, as is typical for ordinary programs and
libraries. Second, servers are designed to run continuously and
often undergo an initialization phase to process configurations
upon startup. In contrast, ordinary programs and libraries
generally execute for a short duration and may not require
such initialization. Third, servers can accept multiple new net-
work connections and process multiple messages within each
connection before termination, whereas ordinary programs and
libraries typically handle a single input before exiting.

These distinctions significantly impact the fuzzing of servers
compared to ordinary programs. Fig. 1 (a) illustrates the
typical execution flow of existing network fuzzers such as
AFLNet [10] and its variations [11], [12], [13], [14], [15],
[17] when processing an input. The process begins with the
forking of an SUT instance from the forkserver, followed
by its initialization, which takes time TI (subsequent time
representations follow the same notation). Next, a network
connection is established between the fuzzer and the SUT
(TC). If the input contains multiple messages, the fuzzer
sequentially extracts each message, transmits it to the SUT
(TSi), waits for the SUT to process the message (TPi), and
receives the response (TRi), extracting relevant response codes
to construct a state machine. Once all messages have been
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processed, the fuzzer closes the connection and terminates
the SUT process (TD). Notably, the connection closure and
SUT termination often occur simultaneously, making them
indistinguishable in practice.

B. Dissection of fuzzing time

TABLE II
THE BREAKDOWN OF FUZZING TIME WHEN AFLNET AND HNPFUZZER

PROCESS A SINGLE SEED IN FOUR SERVERS (IN MICROSECONDS).

Subject Fuzzer TI

(Init.
SUT)

TC

(Conn.
Setup)

TS

(Send)
TR

(Reply)
TP

(SUT
Process)

TD

(Close
& Kill)

LightFTP HNPFuzzer 15,678 873 35 27 112 1,573
AFLNET 19,409 1,945 305 183 109 734

Live555 HNPFuzzer 2,400 225 56 29 783 623
AFLNET 9,247 1,162 1,653 1,754 691 192

OpenSSL HNPFuzzer 84,906 528 45 15 12,056 6,939
AFLNET 70,667 10,381 718 333 11,436 5,893

DCMTK HNPFuzzer 81,956 244 62 11 3,158 21,100
AFLNET 45,045 1,176 567 341 2,758 1,940

To further investigate the overhead incurred by AFLNet
when processing an input, we analyze both AFLNet and the
most recent fuzzer, HNPFuzzer, by measuring their execution
times for handling a single seed, using the time components
defined in the previous subsection. The results are presented
in Table II. HNPFuzzer may restart the SUT for certain inputs,
and in such cases, its initialization time (TI ) and termination
time (TD) are similar to those of AFLNet. Here, HNPFuzzer
indeed restarts the SUTs for these seeds. However, for inputs
where HNPFuzzer does not restart the SUT, TI is eliminated
entirely, and TD is reduced to include only the overhead
associated with closing the connection. HNPFuzzer also effec-
tively reduces TC by eliminating unnecessary waiting time and
decreases both TS and TR through the use of shared memory
for message transmission. However, TP is slightly higher in
HNPFuzzer due to additional instrumentation that monitors
memory operations within the SUT. Notably, both fuzzers
exhibit higher TP values for OpenSSL because, when a seed
passes the prerequisite checks, the subsequent cryptographic
operations require substantial processing time. Conversely, for
inputs that fail the prerequisite checks, TP remains minimal
(typically under 100 µs). Additionally, HNPFuzzer exhibits a
slightly higher TD due to its modified killing procedure, which
includes closing the connection earlier.

The results indicate that maintaining a network connection
constitutes a significant portion of the execution time even in
HNPFuzzer. If the SUT is not restarted, TI is eliminated, and
TD is reduced to only the connection termination overhead.
However, the core processing time (TP ) is irreducible. Even
with HNPFuzzer’s optimized connection setup time (TC),
this overhead still accounts for 779.46% and 28.73% of the
processing time (TP ) in LightFTP and Live555, respectively.
A similar ratio is expected in OpenSSL and DCMTK (Dig-
ital Imaging and Communications in Medicine Toolkit, i.e.,
DICOM Toolkit) when processing fuzzing inputs that fail
early validation checks. Additionally, connection termination
introduces delays as well. For instance, closing a Transport

Layer Security (TLS) connection requires sending a termina-
tion notification before deallocating resources. In comparison
to the persistent mode of AFL [4] and AFL++ [21] for fuzzing
ordinary programs under test (PUT) (as illustrated in Fig. 1
(b)), the connection overhead TC and TD is extra introduced.
Furthermore, while message reception time (TR) is reduced in
HNPFuzzer, it remains a non-negligible overhead.

Other approaches have similar overheads. SnapFuzz and
NSFuzz also restart the SUT for every input [10], [12], [15].
While some approaches mitigate this issue by using snapshot-
based techniques to avoid full restarts [13], [14], the process
of restoring snapshots itself introduces non-negligible latency,
e.g., in the range of 10–20 ms [13]. EQUAFL [22] persists
the SUT but reconnects the connection across multiple inputs
similar to HNPFuzzer.

C. Core ideas and reasonability of HSPFuzzer

The core ideas of our approach are as follows. Given that
network connection setup and teardown constitute a significant
portion of fuzzing time, HSPFuzzer employs connection reuse
to transmit multiple fuzzing inputs over a single connection.
Additionally, HSPFuzzer introduces an optimized message
provision mechanism that schedules message transmission
within the connection to minimize delays and discards unnec-
essary response messages. As a result, HSPFuzzer achieves a
fuzzing time breakdown for the SUT (as illustrated in Fig. 1
(c)) that closely resembles the persistent mode of AFL/AFL++
for ordinary programs.

We justify the reasonability of connection reuse, which is a
core innovation, as follows.

First, a connection is typically not closed by the server
after processing multiple messages in standard server
implementations. We manually examine the source code of
several network protocols, with results summarized in Table
III. Our analysis identifies three types of messages: prefix
messages, which must be sent at the beginning of a connection
(e.g., for authentication); ordinary messages, which can be
sent an unlimited number of times after authentication (e.g.,
for serving a client); and quit messages, which explicitly ter-
minate the connection (e.g., for ending the session or handling
severe errors). For instance, in FTP servers, once a client
successfully authenticates using USER and PASS messages,
subsequent commands such as LIST, PWD, MKD, and STAT
can be transmitted within the same network connection and
processed normally by the server [20], as illustrated by the
code snippet of the Pure-FTPd server shown in Listing 1.
The connection remains open unless a QUIT message is sent
or a severe error occurs (e.g., an over-length message or an
unexpected HTTP GET request), both of which immediately
terminate the session. For many protocols, the quit messages
occur infrequently during fuzzing, provided they are excluded
from the seed inputs. We further validate this observation
experimentally in Section IV.

Second, connection reuse does not introduce false posi-
tives in vulnerability detection. This is because server imple-
mentations generally do not impose restrictions on the number
of messages a client can send within a single connection. If
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TABLE III
THE MESSAGES THAT CAN BE SENT OVER A NETWORK CONNECTION IN DIFFERENT PROTOCOL IMPLEMENTATIONS. “{}” DENOTES CONCATENATION.

“[]” INDICATES THE MESSAGES ARE OPTIONAL DUE TO SETTINGS. SERVERS ARE USING THEIR VERSIONS OR COMMIT IDS.

Protocol Prefix Message Ordinary Message Quit Message Server

FTP {USER,PASS} LIST,PWD,ABOR, ... QUIT, over-length message LightFTP v2.3.1, Pure-
FTPd v1.0.52

QUIT, messages of other protocols like GET, over-
length messages

vsftpd v3.0.5, ProFTPD
v1.3.8c

DTLS {ClientHello, ClientHello1} ClientKeyExchange, ChangeCipherSpec,
Finished, ...

ALERT (fatal)2, error messages (e.g., wrong fields) TinyDTLS (8a9e048)

SIP [REGISTER],[INVITE] CREATE, JOIN, INVITE, ... BYE, fatal error messages (i.e., wrong critical fields) Kamailio v6.0.0
TLS ClientHello ClientKeyExchange, ChangeCipherSpec, ... ALERT (fatal), error messages (e.g., wrong fields) OpenSSL v3.4.0
SSH {SSH MSG KEXINIT,

SSH MSG KEX ECDH INIT,
SSH MSG USERAUTH
REQUEST}, ...

SSH MSG CHANNEL OPEN, SSH MSG
CHANNEL REQUEST, ...

SSH MSG DISCONNECT, unknown message types,
error messages if in strict mode

OpenSSH v9 9 P1

DICOM [A-ASSOCIATE-RQ] C-STORE, C-FIND, ... A-RELEASE-RQ, A-ABORT, fatal error messages
(i.e., wrong critical fields)

DCMTK v3.6.9

RTSP [DESCRIBE] OPTIONS, SETUP, PLAY, ... TEARDOWN, fatal error messages (i.e., wrong critical
fields)

Live555 v2025.01.17

MQTT CONNECT PUBLISH, SUBSCRIBE, UNSUBSCRIBE,
...

DISCONNECT, fatal error messages (i.e., wrong crit-
ical fields)

Mosquitto v2.0.20

IPP [WWW-Authenticate] Get-Jobs, Create-Job, Send-Document, ... fatal error messages (i.e., wrong critical fields) ippsample (65a3759)
RESP [AUTH] GET, SET, LPOP, ... QUIT, fatal error messages (i.e., wrong critical fields) Redis v7.4.2
SMTP {EHLO,AUTH} MAIL, RCPT, DATA, ... QUIT, too many fatal error messages Exim v4.98

1 The retransmission contains the cookie.
2 Quit message causes the termination of the session but not the connection in UDP-based protocols.

453 } else if (loggedin == 0) {
454 / * from t h i s p o i n t , a l l commands need

a u t h e n t i c a t i o n * /
455 addreply_noformat(530, MSG_NOT_LOGGED_IN);
456 goto wayout;
457 } else {

Listing 1. The code snippet in Pure-FTPd shows that the ordinary messages
are processed after the user logs in.

a vulnerability can be triggered by sending multiple inputs
(i.e., messages) within the same connection, an attacker could
exploit the server using the same message sequence. It is
important to note that this situation differs from ordinary
programs or libraries, which typically process one input at
a time. For example, the tcpdump program is commonly
used to process a single pcap file per execution. If modified
to process multiple inputs during fuzzing (e.g., using AFL
persistent mode), discovered vulnerabilities may not manifest
in real-world usage. It is also worth noting that HSPFuzzer
does not attempt to maintain a clean environment for each
input transmitted over the same connection. This is because
we consider it unnecessary, as the inputs may not interfere
with one another. Even if they do, such interference could
potentially be beneficial for exploring diverse execution paths
in certain cases (Section IV-D3).

Last but not least, connection reuse removes the need
for additional code to split messages within inputs. Typ-
ically, implementing message splitting requires a non-trivial
coding effort when using AFLNet and its variants [10], [12],
[13], [15], [17], particularly for fuzzing servers that do not
support processing packets containing multiple messages. For
example, the LightFTP server terminates its for loop after
matching a single command in the received packet rcvbuf,
thereby ignoring any additional commands present in the same
packet. As of March 2025, only 17 protocols are officially
supported in the AFLNet repository [10]. While limiting each
input to a single message eliminates the need for message-

splitting logic, it also restricts the SUT to processing only one
message per fuzzing execution. This limitation reduces the
ability to discover vulnerabilities that require processing mul-
tiple messages within the same connection (e.g., CVE-2023-
24042). However, with connection reuse, using single-message
inputs avoids this problem without imposing constraints, as
multiple inputs can be transmitted within a single connection.
Additionally, AFLNet and its variants require extra code to
parse reply messages and extract response codes, a task that
can instead be handled by code-free state collection techniques
such as StateAFL and SGFuzz [11], [16].

We provide a brief theoretical comparison as follows.
Assuming that the time required to process each input is
uniform, the time to process a single input in AFLNet can be
represented as (TI +TC +TS+TP +TR+TD) (Fig. 1 (a)). In
contrast, assuming that HSPFuzzer restarts the PUT operation
N times and reestablishes the connection M times when
processing n inputs, the average time to process one input is
given by NTI+MTC+nTS+nTP+MTD

n = N
n TI+

M
n (TC+TD)+

TS + TP . When connection reuse is effective, i.e., when N
and M are small relative to n, this average time approximates
(TS + TP ) (Fig. 1 (c)).

D. Challenges and solutions

There are several challenges that must be addressed to
ensure the effectiveness of connection reuse and message
provision.

(C1) First, the SUT may not properly process messages
received within a connection unless the correct prefix messages
are first provided, and in some cases, it may close the
connection or even enter an abnormal state. Additionally, the
SUT may not support inputs containing multiple messages.

Our solution: HSPFuzzer employs an algorithm to auto-
matically identify potential prefix messages from source pcap
files and determine whether the SUT can process multiple
messages within a single input. This ensures proper message
preparation during seed generation. To monitor connection
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status, HSPFuzzer hooks functions responsible for closing
connections and related operations to detect when the SUT
attempts to close a connection. It also leverages coverage
monitoring to identify cases where the connection does not
behave as expected. When such anomalies are detected, HSP-
Fuzzer proactively re-establishes a new connection to maintain
stability.

(C2) Second, to minimize delays, the fuzzer must auto-
matically track the message processing status of the SUT,
enabling timely delivery of the next message or input as soon
as processing of the current message or input is complete.

Our solution: HSPFuzzer introduces an optimized message
provision mechanism by hooking the network I/O functions
of the SUT, allowing it to monitor the SUT’s activity and
detect the completion of message processing using two condi-
tions identified in our study. To maximize efficiency, message
passing is also handled via shared memory, ensuring minimal
latency. Whenever feasible, HSPFuzzer transmits all messages
in a single batch to reduce turnaround time and discards
unnecessary response messages to further optimize perfor-
mance. While HNPFuzzer also hooks network I/O functions
and utilizes shared memory, it lacks support for connection
reuse and UDP-based protocols. Additionally, it employs a
more complex synchronization method [17].

III. DESIGN AND IMPLEMENTATION

A. Overview

Compared with conventional fuzzers such as AFL/AFL++,
HSPFuzzer introduces key differences in both preprocessing
and fuzzing, as illustrated in Fig. 2, where the differences
are highlighted in yellow. During preprocessing, HSPFuzzer
employs a prefix message recognition algorithm to analyze and
classify messages into prefix messages and ordinary messages,
based on whether they must be sent at the start of a connection.

During fuzzing, HSPFuzzer consists of two main compo-
nents: the primary fuzzer and a fuzzer stub, the latter residing
within the same process as the SUT. The primary fuzzer
includes modules that enable connection reuse, in addition to
the standard functionalities of a fuzzer. The connection reuse
mechanism is primarily implemented within the connection
management module, which maintains the network connection
used during fuzzing, and the coverage monitoring module,
which assesses the stability and validity of the connection.
The fuzzing loop of the HSPFuzzer is shown in Algorithm 1,
with modifications highlighted in grey [4], [5], [6].

The fuzzer stub is responsible for message provision, en-
suring that fuzzing inputs (i.e., messages) are delivered to the
SUT in a timely manner. This is achieved through the network
I/O hook module, which intercepts the SUT’s network I/O
functions, and the provisioning loop module, which continu-
ously supplies messages to the SUT. Synchronization between
the primary fuzzer and the fuzzer stub is handled through pipes
while fuzzing inputs and coverage information are transmitted
through shared memory for greater throughput [17].

The following subsections provide a detailed explanation of
these modules.

pcap 
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Fig. 2. Overall architecture of HSPFuzzer (differences to AFL++ highlighted
in yellow).

Algorithm 1 The fuzzing loop.
Input: Seeds, Prefixes
Output: Crashes
1: repeat
2: s = CHOOSENEXT(Seeds)
3: p = ASSIGNENERGY(s)
4: for i from 1 to p do
5: s′ = MUTATEINPUT(s)
6: PREPARECONNECTION(Prefixes)
7: INPUTEVALUATION(s′)
8: if s′ crashes then
9: add s′ to Crashes

10: else if ISINTERESTING(s′) then
11: add s′ to Seeds
12: end if
13: MONITORCOVERAGE()
14: end for
15: until timeout reached or user aborts

B. Prefix message identification

As explained in Section II-C, prefix messages may be
required to establish a network connection to the SUT with
specific configurations that allow the majority of messages to
be processed. We formalize this concept in Definition III.1. In
this definition, τ represents the scenario where messages such
as quit messages are included, which are typically processed
unconditionally (τ is usually a small value, e.g., 1).

Definition III.1 (Prefix Messages). Prefix messages in a
typical message sequence are those that must be present;
otherwise, at most τ of the remaining messages can be
processed.

HSPFuzzer introduces a prefix message recognition algo-
rithm to automatically identify prefix messages from given
pcap files and determine whether the SUT can process multiple
messages within a single input. Each pcap file contains packets
exchanged by a client and server during an interaction, which
can be obtained by capturing network traffic between them
[23], [10].

The algorithm is detailed in Algorithm 2. The core prin-
ciple is that since prefix messages significantly impact the
processing of subsequent messages, the latter cannot achieve
the same code coverage in the SUT without them. To assess
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this, we use a SUT instance with identical startup settings
and collect branch coverage using llvm-cov (other coverage
metrics are also viable). The algorithm takes a pcap file as in-
put and produces three outputs: the identified prefix messages
(PrefixMsgs), and two boolean values (NeedSplit and
AllSplit) which indicate whether the SUT requires message
splitting for at least the prefix messages and whether message
splitting is necessary for non-prefix messages, respectively. If
multiple pcap files are provided, the algorithm is executed
separately for each.

The first phase identifies prefix messages. It first get the
coverage of each message by sending all N messages from
the pcap file sequentially (line 3). Assuming that N ≥ 2 + τ ,
the algorithm iterates through messages from M0 to MN−2−τ

to determine whether each is a prefix message (lines 4-16).
If Mx is a prefix message, the algorithm calculates after
removing Mx the number of messages after Mx that still
achieve similar coverage as before, i.e., within a threshold
δ, accounting for factors such as network fluctuations or
multithreading effects (lines 9-11). If this number exceeds τ ,
Mx is not a prefix message, and the process terminates (lines
13-15). Otherwise, the next message is analyzed in the same
manner. Ultimately, all messages preceding the last non-prefix
message are classified as prefix messages (line 17).

The second phase of the algorithm first determines
NeedSplit by comparing the coverage differences between
two scenarios: (1) sending all N messages from the pcap
file sequentially (CovA) and (2) concatenating all messages
into a single input and sending them at once (lines 19-20). If
the SUT can parse multiple messages within a single packet,
the coverage values in both cases should differ only slightly,
i.e., within Nδ, and no splitting is needed. Otherwise, at least
prefix messages need to be split from other messages. Next,
the algorithm determines AllSplit using a similar approach by
comparing CovA with the coverage obtained from sending the
prefix messages separately while concatenating the non-prefix
messages. If the difference is significant, AllSplit is set to
true, indicating that the non-prefix messages also require
splitting.

HSPFuzzer utilizes these results for seed preparation. The
identified prefix messages are integrated into the network
connection setup phase. Within the fuzzer, a dedicated prefix
message queue is maintained alongside the original seed
queue to facilitate efficient management. If NeedSplit is set
to true, the prefix messages must be explicitly provided.
Otherwise, if the seeds already contain prefix messages, they
may not need to be provided separately, as they will be sent to
the SUT when the seeds are transmitted. If both NeedSplit
and AllSplit are true, all messages are further separated into
individual seeds. In rare cases where a pcap file contains quit
messages during seed preparation, these messages are removed
to ensure connection reuse.

C. Connection reuse

Connection reuse in HSPFuzzer is primarily implemented
through a connection management module and a coverage
monitoring module. Note that HSPFuzzer now does not

Algorithm 2 Prefix Message Identification
Input: PcapF ile
Output: PrefixMsgs, NeedSplit, AllSplit
1: Msgs ← PcapF ile // Get a list of messages M0 . . .MN−1

2: N ← Msgs.LENGTH // Assume N ≥ 2 + τ
3: {Cov(Mi) | i ∈ [0, N − 1]} ← GETCOVERAGE(Msgs)

// Determine PrefixMsgs
4: for x← 0 to N − 2− τ do
5: LeftM ← Msgs.REMOVE(Msgs.GET(x))
6: {CovT (Mi) | i ∈ [0, N−1]∧i ̸= x } ← GETCOVERAGE(LeftM )
7: Num ← 0
8: for y ← x+ 1 to N − 1 do
9: if DIFF(Cov(My),CovT (My)) ≤ δ then

10: Num ← Num+ 1
11: end if
12: end for
13: if Num > τ then
14: break
15: end if
16: end for
17: PrefixMsgs ← Msgs.SUBLIST(0, x)

// Determine NeedSplit and AllSplit
18: NeedSplit ← false, AllSplit ← false
19: MsgsInOne ← CONCATENATE(Msgs)
20: CovO ← GETCOVERAGE(MsgsInOne)
21: CovA←

⋃N−1
0 Cov(Mi)

22: if DIFF(CovA,CovO) >Nδ then
23: NeedSplit ← true
24: LeftMsgsInOne ← CONCATENATE(Msgs.SUBLIST(x, N))
25: CovOL← GETCOVERAGE(PrefixMsgs,LeftMsgsInOne)
26: if DIFF(CovA,CovOL) >Nδ then
27: AllSplit ← true
28: end if
29: end if

reuse connection in UDP-based servers, since they are either
connection-less (session-less) or implement protocol-specific
connection management functions incompatible with general
hooking techniques.

Connection Management. The connection management
module is responsible for coordinating the establishment and
termination of network connections, transmitting prefix pack-
ets, and restarting the SUT when necessary. When a new input
is generated by mutating a seed and is ready for execution,
the module first checks whether an active network connection
is available. If no connection is ready, it instructs the fuzzer
stub to initiate a new connection to the SUT. Otherwise, the
available connection is immediately used to process the input.

If a new network connection is established, the module se-
lects a sequence of prefix packets, as identified in the previous
subsection, and transmits them to stabilize the connection,
ensuring it can correctly process subsequent ordinary mes-
sages. If the fuzzer stub detects that the connection has been
closed or if input processing repeatedly times out (e.g., more
than five consecutive timeouts), the module marks the current
connection as closed and initiates a new one. Additionally, if
frequent connection restarts occur due to timeouts, the module
restarts the SUT, as persistent failures may indicate that the
SUT has encountered an issue requiring a clean restart.

To eliminate network overhead when restarting a connec-
tion, the fuzzer stub employs a specialized mechanism. First,
it creates a dummy socket. Since network protocol servers
invoke bind to associate with a specific port and listen
to accept incoming connections, the fuzzer stub hooks these
functions. Within bind, it verifies whether the specified
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port and protocol type match those configured in the fuzzer
settings and records the file descriptor of the server socket.
Subsequently, in listen, it checks whether the provided
parameter matches the recorded socket descriptor. If so, it
creates a new socket and connects it to the recorded server
socket, establishing a dummy socket (dummy_fd).

Then, whenever the fuzzer stub is instructed to start a
new network connection, it simulates network I/O operations,
ensuring that when the SUT calls accept, it always receives
the dummy socket dummy_fd. This approach prevents the
establishment of actual network connections for subsequent
interactions. Moreover, since the dummy socket is a real
Internet socket rather than a UNIX socket, as used in [12],
[24], [25], the SUT can invoke any network functions on it,
ensuring maximum compatibility.

Coverage Monitoring. While the connection management
module and fuzzer stub continuously monitor the connec-
tion status and initiate restarts when necessary, certain cases
arise where the connection remains open but fails to process
messages correctly. For example, Mosquitto [26], an MQTT
(Message Queuing Telemetry Transport) broker server, may
encounter issues when the Remaining Length field [27] of
a message is excessively large. In such scenarios, the server
continuously reads incoming data into memory but does not
process it until the entire specified length has been received.
Consequently, a large number of fuzzing inputs remain unpro-
cessed, rendering fuzzing ineffective.

To mitigate this issue, HSPFuzzer employs a coverage mon-
itoring module based on an Exponentially Weighted Moving
Average (EWMA) algorithm. EWMA dynamically adjusts its
weighting, prioritizing recent data while gradually diminish-
ing the influence of older data. The module maintains an
exponential moving average value, Eavg. After each input
execution, the coverage metrics of the current and previous
inputs are recorded as Currcov and Prevcov (initialized to 0).
The coverage difference, Dcov , is computed as:

Dcov = DIFF(Currcov, P revcov), (1)

and updates Eavg as follows:

Eavg = αDcov + (1− α)Eavg. (2)

Finally, the module evaluates whether Eavg has dropped
abnormally below a predefined threshold γ (set to 1 in our
experiments). A significant drop suggests that the server is
in a degraded state, repeatedly executing the same operations
without discovering new coverage. In such cases, the module
instructs the connection management module to restart the
connection.

D. Message provision

The message provision module ensures that fuzzing inputs
(i.e., messages) received from the fuzzer are promptly deliv-
ered to the SUT for processing without unnecessary delays.
It comprises a network I/O hook module that intercepts and
manipulates the SUT’s network I/O functions, and a control
module, which operates as a provisioning loop complementing
the fuzzing loop that continuously generates inputs [4], [21].

Network I/O Hook. Specifically, the network I/O hook
provides the following functionalities to the provisioning loop
through LD_PRELOAD-based dynamic hooking: (a) initial-
ization (including creating the dummy socket and launching
the message provisioning loop), (b) manipulation of socket
read and write operations (including redirecting read requests
to shared memory and dropping unnecessary writes), (c)
acceptance of new connections, (d) connection closure, and
(e) monitoring of connection closures.

Provisioning Loop. The provisioning loop is started as
a separate thread within the network I/O hook module. It
needs to determine when the SUT has finished processing
all messages in an input, allowing it to send the next input
without delay. Other fuzzers such as AFLNet [10], [15],
[12] terminate the SUT (e.g., via a SIGTERM signal) after
sending the last message, using the termination event as an
indicator that processing has ended. HNPFuzzer [17] does
not always terminate the SUT after each input but does
close the connection, using connection closure as an indicator.
HSPFuzzer differs in that it may retain both the SUT and the
connection after processing an input.

To address this, we identify two reliable conditions that
signal processing completion and apply to both TCP- and
UDP-based SUTs. The first condition is when the SUT at-
tempts to read the next input, implying that it has finished
processing the current input. Notably, the point at which the
SUT completes reading an input (e.g., when recv returns)
does not necessarily mark the completion of processing, as
further computation may be required. The second condition
is connection closure. Since HSPFuzzer supports connection
reuse, an explicit connection termination usually indicates that
the SUT has received a quit message and intends to terminate
the session. Additionally, a timeout condition is incorporated
to handle corner cases where neither of the primary conditions
is met.

Algorithm 3 outlines the provisioning loop. The loop first
retrieves an input and a command from the fuzzer via shared
memory and a dedicated pipe, respectively (line 5). Based on
the received command, the loop triggers the connection closure
functionality of the network I/O hook module if necessary
(line 7), followed by invoking acceptance of new connections
functionality if required (line 10). Subsequently, it signals the
network I/O hook module to allow the SUT to start reading
input via the manipulation of socket read operations (line 12).
The loop then waits for the SUT to complete processing and
obtain a result (line 13). The result corresponds to one of the
three aforementioned possible conditions. Finally, the result is
sent back to the fuzzer to update the status of the fuzzer stub.

IV. EVALUATION

In our experiments, we aim to address the following re-
search questions:

• RQ1. Does HSPFuzzer achieve higher fuzzing through-
put?

• RQ2. Does HSPFuzzer attain greater code coverage?
• RQ3. How does connection reuse enhance the fuzzing

efficiency of HSPFuzzer?
• RQ4. Can HSPFuzzer detect more vulnerabilities?
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Algorithm 3 Provisioning Loop
1: global HasConn ← false // Also be set to false when monitoring the

connection closure
2: global SharedMem ← ∅
3: while true do
4: NeedClose ← false
5: RECVCOMMAND(SharedMem, &NeedClose) // receive an input

and an command (i.e., closing connection or not) from the fuzzer side
6: if NeedClose is true and HasConn is true then
7: CLOSECONNECTION(&HasConn)
8: end if
9: if HasConn is false then

10: CREATECONNECTION(&HasConn)
11: end if
12: STARTTOREADMESSAGES(SharedMem)
13: Res ← WAITFORFINISHING() // Result could be

Normal|Closed|Timeout
14: SENDRESULTS(Res)
15: end while

A. Experiment setup

We evaluated HSPFuzzer on 12 servers, each implement-
ing a distinct network protocol. Our selection includes nine
servers from ProFuzzBench [23], along with three widely used
servers: Mosquitto, ippsample, and Redis. We used LLVM
version 12, the latest version supported by AFLNet. Similar to
HNPFuzzer [17], HSPFuzzer does not require patching servers
to terminate after processing each fuzzing input.

The HSPFuzzer prototype is implemented based on AFL++
(v4.09c). For comparison, we selected five state-of-the-
art fuzzers: AFLNet [10], AFLNwe [10], SnapFuzz [12],
HNPFuzzer [17], and AFL++ [21]. AFL++ with desock (i.e.,
preeny) [25] is one of the recommended methods for fuzzing
network protocols using AFL++ [21]. All fuzzers used the
same initial seed set to ensure a fair comparison [23]. However,
for SUTs where NeedSplit is true (LightFTP and Tiny-
DTLS), HSPFuzzer first extracted prefix messages from the
pcap files as previously described. Additionally, if AllSplit
was also true (LightFTP), all messages were further split
into separate seeds.

All experiments were conducted on a 64-bit Ubuntu 20.04
LTS system (kernel version 5.4.0-196-generic) running on an
Intel Xeon Platinum 8124M CPU (3.00GHz) with 16 cores
and 15GB of RAM. Each experiment was executed within a
Docker container, with a runtime of 24 hours per trial, and
repeated six times to mitigate randomness [28].

B. Fuzzing throughput (RQ1)

Fuzzing throughput is a critical factor influencing a fuzzer’s
ability to identify vulnerabilities within a given timeframe, as
higher throughput allows the generation of more inputs for
testing the SUT. We evaluated the performance of various
fuzzers, with the results presented in Table IV. Some fuzzers
could not be configured to support certain servers, which we
denote as “-”. In particular, OpenSSH and Exim posed chal-
lenges for fuzzing while maintaining their normal operation
after serving a client. For instance, OpenSSH must be executed
with the “-d” option to remain in the foreground but not detach
as a daemon during fuzzing, but with the option it terminates
after handling one client. Since we aim to avoid modifying

the source code to alter default behavior, HSPFuzzer instead
restarts these two SUTs after processing each input.

The results demonstrate that HSPFuzzer significantly out-
performs other fuzzers in fuzzing throughput. Note that the
comparison is generally fair since they use the same seeds
(i.e., sending the similar messages in one execution), except
LightFTP whereas HSPFuzzer uses seeds that contain one
message only, as we explained in Section IV-A. On aver-
age, HSPFuzzer achieves a throughput 106,206.32% (1062×)
higher than AFLNet, executing thousands or even tens of
thousands of test cases per second across multiple servers, with
an average throughput of 4,473.05 executions per second. This
remarkable performance is attributed to connection reuse and
efficient message provision. Connection reuse reduces much
overhead as shown in Fig. 1 (c), and our efficient message
provision also reduces waiting time. AFLNwe, which sends
an entire input to the SUT at once, reduces some waiting time
and achieves an average throughput 202.70% that of AFLNet.
AFL++&desock, which utilizes a UNIX socket for communi-
cation, further increases throughput to 678.76% of AFLNet.
SNAPFuzz, by deferring the fork point, improves throughput
to 781.9% of AFLNet. HNPFuzzer introduces a persistent SUT
execution mode but achieves only a 1,213.41% improvement
over AFLNet. Our analysis indicates that this is due to its
frequent SUT restarts, which occur whenever changes in
global variables or heap memory are detected. However, this
strategy results in unnecessary restarts, approaching 100% in
certain programs, since many servers modify global variables
or allocate additional memory for each new connection. For
example, LightFTP assigns a session ID as a global variable
that increments with each new connection. Such modifications
have minimal impact on fuzz testing and do not necessitate
frequent restarts.

C. Code coverage (RQ2)

Code coverage is a key metric for evaluating fuzzers [28],
[29], as it directly reflects the extent of code explored and
correlates moderately with vulnerability discovery ability [29].
To unify measurement, we measured coverage with llvm-
cov [30], instead of gcov as used in ProFuzzBench. Since
HSPFuzzer does not restart the SUT even when its coverage
changes, we collected coverage data at runtime by setting the
“%m” parameter in LLVM_PROFILE_FILE and periodically
sending a signal to instruct the SUT to write its profile, with
“%m” merging the output. Table V presents the final code
coverage results, while Fig. 3 illustrates the coverage growth
achieved by each fuzzer over 24 hours.

The results indicate that HSPFuzzer consistently outper-
forms other fuzzers in terms of code coverage across all
tested servers. On average, its branch coverage exceeds that of
AFLNet by 25.1%. The p-values from Mann-Whitney U test
[28] comparing HSPFuzzer and AFLNet are all below 0.05,
confirming statistical significance in their differences across all
servers. The coverage growth curves reveal that HSPFuzzer
achieves significantly higher coverage early in the fuzzing
process, aligning with its superior fuzzing throughput. This
suggests that the inputs executed by HSPFuzzer contribute
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TABLE IV
AVERAGE FUZZING THROUGHPUT (EXECS/S) OF VARIOUS FUZZERS (THE CHANGES IN PARENTHESES ARE COMPARED TO AFLNET).

Server AFLNET AFLNWE SNAPFuzz HNPFuzzer AFL++&desock HSPFuzzer

Dnsmasq 6.82 27.49 (+303.08%) 62.39(+814.81%) 32.55 (+377.27%) 46.66 (+584.16%) 10359.15 (+151793.70%)
LightFTP 5.12 32.04 (+525.78%) 31.20 (+509.38%) 31.43 (+513.87%) 22.70 (+343.36%) 12058.14 (+235410.55%)
TinyDTLS 2.12 14.08 (+564.15%) 49.50 (+2234.91%) 219.88 (+10271.70%) 43.01 (+1928.77%) 11154.47 (+526054.25%)
Kamailio 4.61 5.80 (+25.81%) - 8.43 (+82.86%) - 6028.45 (+130668.98%)
OpenSSL 3.41 14.96 (+338.71%) - 8.69 (+154.84%) - 3668.30 (+107474.78%)
OpenSSH 19.12 22.02 (+15.17%) - 27.7 (+44.87%) 3.2 (-83.26%) 29.65 (+55.07%)
DCMTK 18.42 15.83 (-14.06%) 24.74 (+34.31%) 6.97 (-62.16%) 17.84 (-41.15%) 792.13 (+4200.38%)
Live555 12.16 30.46 (+150.49%) 50.60 (+316.12%) 14.07 (+15.71%) - 824.40 (+6679.61%)
Mosquitto 8.45 4.58 (-45.80%) - - 31.46 (+272.31%) 3683.51 (+43491.83%)
ippsample 7.31 9.09 (+24.35%) - 41.52 (+467.99%) 37.20 (+408.89) 4005.61 (+54696.31%)
Redis 7.34 10.25 (+32.43%) - - 33.81 (+336.82%) 1065.31 (+13663.70%)
Exim 1.95 3.81 (+95.83%) - 7.16 (+267.18%) - 7.54 (+286.67%)

Average 167.96% 781.90% 1213.41% 405.54% 106206.32%

TABLE V
AVERAGE BRANCH COVERAGE OF VARIOUS FUZZERS WITH P-VALUES COMPARING AFLNET AND HSPFUZZER (THE CHANGES IN PARENTHESES ARE

COMPARED TO AFLNET).

Server AFLNET AFLNWE SNAPFuzz HNPFuzzer AFL++&desock HSPFuzzer p-value

Dnsmasq 1388.00 1407.00 (+1.37%) 1376.20 (-0.85%) 1381.90(-0.44%) 1136.30 (-18.13%) 1553.00 (+11.89%) 0.012
LightFTP 301.70 142.00 (-52.93%) 303.00 (+0.43%) 304.50 (+0.93%) 118.20 (-60.82%) 377.70 (+25.19%) 0.008
TinyDTLS 823.70 201.30 (-75.56%) 824.30 (+0.07%) 827.00 (+0.40%) 131.50 (-84.04%) 854.00 (+3.68%) 0.015
Kamailio 11075.00 9753.30 (-11.93%) - 11358.80 (+2.56%) - 14474.30 (+30.69%) <0.001
OpenSSL 10711.30 9411.00 (-12.14%) - 11066.70 (+3.32%) - 12062.10 (+12.61%) 0.004
OpenSSH 3047.30 3052.30 (+0.16%) - 3081.30 (+1.12%) 2413.30 (-20.81%) 3124.70 (+2.54%) 0.029
DCMTK 3765.50 3658.50 (-2.84%) 3805.00 (+1.05%) 3808.20 (+1.13%) 3521.30 (-6.49%) 4111.00 (+9.18%) 0.011
Live555 2314.00 1941.00 (-16.12%) 2364.70 (+2.19%) 2362.50 (+2.10%) - 2383.00 (+2.98%) 0.017
Mosquitto 2403.40 2323.00 (-3.35%) - - 1564.20 (-34.92%) 3530.40 (+46.89%) 0.003
ippsample 3017.20 2735.00 (-9.35%) - 3286.40 (+8.92%) 2892.30 (-4.14%) 3619.10 (+19.95%) 0.009
Redis 6537.80 8789.40 (+34.44%) - - 4556.00 (-30.31%) 14893.80 (+127.81%) <0.001
Exim 3184.30 3103.00 (-2.55%) - 3224.40 (+1.26%) - 3423.70 (+7.80%) 0.002
Average -12.57% +0.58% +2.13% -32.46% +25.10%

effectively to exploring the SUTs. Moreover, connection reuse
may facilitate the triggering of new execution paths in certain
servers. For example, in Redis, executing inputs without
restarting the SUT allows the server to accumulate data,
potentially activating execution paths that require specific data
states to be reached [31]. A similar effect is observed in other
servers, such as Mosquitto.

Despite its higher throughput, AFLNwe exhibits lower
branch coverage than AFLNet, consistent with prior findings
[17]. This is because AFLNwe does not split messages in
an input but instead sends them as a single packet, lim-
iting its ability to effectively test servers like LightFTP,
which processes only one command from a received buffer
while discarding the rest or treating them as parameters.
AFL++&desock suffers from the same limitation. Its branch
coverage is even lower than that of AFLNwe, and we find
that it may be attributed to its seed-trimming process, leading
to many seeds being reduced to very short seeds (often only
several bytes). HSPFuzzer disables both calibration and seed
trimming [31]. SnapFuzz and HNPFuzzer achieve slightly
higher branch coverage than AFLNet, with improvements of
0.58% and 2.13%, respectively. However, their overall gains
are limited due to relatively low fuzzing throughput.

D. The Effect of connection reuse (RQ3)

1) The effect of prefix messages: Fig. 4 illustrates the
coverage performance of HSPFuzzer without prefix messages

on LightFTP and TinyDTLS since only the two SUTs use
prefix messages separately. In LightFTP, HSPFuzzer without
prefix messages requires approximately 10 additional hours
to achieve the same coverage as its counterpart with prefix
messages. This delay stems from HSPFuzzer’s connection
reuse mechanism, which facilitates the discovery of seeds
that begin with different commands, as command names
are utilized as dictionary entries within the fuzzer. Without
connection reuse, login attempts are likely to fail, yielding
results similar to those of AFLNwe and AFL++&desock. In
the case of TinyDTLS, HSPFuzzer without prefix messages
fails to establish a session, as only ClientHello messages are
parsed while subsequent messages are discarded.

2) The number of times a connection is reused: It is unclear
how many inputs can be effectively transmitted within a
single connection during real-world fuzzing. To investigate
this, we measured the number of connections utilized by
different servers to process one million fuzzing inputs and
computed the average number of inputs per connection. The
results, presented in Table VI, exclude SUTs that do not have
connection reuse (i.e., UDP-based servers and OpenSSH and
Exim that are restarted for each input). The findings indicate
that most servers efficiently handle multiple inputs within a
single connection, thereby amortizing the overhead associated
with connection setup and teardown. However, OpenSSL and
DCMTK have stricter message handling, processing only 1.01
and 3.03 inputs per connection, respectively.
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Fig. 3. Average branch coverage growth over 24h of various fuzzers.
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Fig. 4. HSPFuzzer with and without prefix messages.

TABLE VI
THE AVERAGE NUMBER OF INPUTS SENT ON A CONNECTION (K =

THOUSAND, M = MILLION). TESTING USING 1M INPUTS.

Program OpenSSL LightFTP Live555 DCMTK Redis Mosquitto ippsample

Reuse Count 1.01 >1M 306.49 3.03 619.73 52.61K 1.21K

3) The impact of connection reuse on the coverage ability of
inputs: Section IV-C establishes that HSPFuzzer significantly
outperforms other fuzzers in terms of coverage. However, it
remains unclear whether this advantage is due to its high
fuzzing throughput (Section IV-B) or whether connection
reuse actually impairs input effectiveness in coverage. We
selected four servers where connection reuse was particularly
effective (more than 300 reused inputs per connection). We
then executed 10K inputs against these servers using two
configurations: one leveraging connection reuse and the other
restarting the SUT for each input (i.e., no connection reuse).
We employed two coverage metrics provided by AFL++ (and
AFL): hit-count and tuple coverage. A tuple represents a byte
in the coverage map and corresponds to a new edge (i.e.,
SanitizerCoverage) under the afl-clang-fast instrumentation
method. Hit-count coverage tracks execution frequency per
tuple, categorizing occurrences into eight buckets (i.e., 1, 2, 4,
8, 16, 32, 64, 128). Both metrics contribute to seed selection
in AFL++, with tuple coverage also influencing favored seed
calculations.

The experiment was repeated five times, and the average
results are depicted in Fig. 5. Overall, connection reuse
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does not degrade coverage performance and, in some cases,
enhances it. For tuple coverage, connection reuse achieves
significantly higher coverage in Mosquitto, LightFTP, and
Redis, while maintaining comparable performance in Live555.
In terms of hit-count coverage, connection reuse leads to
improved results in Mosquitto and LightFTP, similar coverage
in Live555, and slightly reduced coverage in Redis. These
findings suggest that connection reuse does not hinder the
exploration of SUT execution paths and is recommended for
its substantial performance benefits.
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Fig. 5. The coverage ability of 10K inputs with and without connection reuse,
which is measured by the number of new hit-counts and tuples.

4) The effect of coverage monitoring: We only enable
coverage monitoring in Mosquitto since only the SUT may en-
ter abnormal conditions. This server invokes loop_handle
_reads_writes() to process socket data before returning
control to the upper layer. We configured HSPFuzzer to fuzz
Mosquitto with one million inputs and recorded the number
of times loop_handle_reads_writes() successfully
returned to the upper layer. The results indicate that enabling
coverage monitoring increased this count from 4.78M to
5.19M, an 8.6% improvement over the configuration without
coverage monitoring. This suggests that coverage monitoring
can enhance fuzzing effectiveness by mitigating server anoma-
lies.

E. Vulnerability discovery (RQ4)

To evaluate HSPFuzzer’s capability in identifying vulnera-
bilities, we compared its performance against other fuzzers.
Detected crash seeds were replayed on SUTs built with Ad-
dressSanitizer (ASan), and unique vulnerabilities were manu-
ally analyzed based on deduplicated stack traces from the top
three stack frames [28], [32], [5]. Table VII shows the average
time to discover the vulnerabilities by different fuzzers. All
identified vulnerabilities have been publicly disclosed and are
absent from the latest software versions. The results demon-
strate that HSPFuzzer detects at least 4 more vulnerabilities
than other fuzzers, and discovers most issues within the first
hour, aligning with its rapid coverage expansion at the start of
fuzzing.

Furthermore, the memory leak vulnerability CVE-2021-
41690 in DCMTK, discovered exclusively by HSPFuzzer,
highlights its unique advantage in detecting vulnerabilities
triggered by a high volume of messages. This memory
leak results from the missing deallocation of two lists
presentationContextList and userInfo allocated

TABLE VII
TIME TO DISCOVER SPECIFIC VULNERABILITIES AND TOTAL FOUND

NUMBER BY DIFFERENT FUZZERS (M = MINUTE, S = SECOND)

Subject Vulnerability AFLNet AFLNwe SnapFuzz HNPFuzzer AFL++ HSPFuzzer

Live555

CVE-2018-4013 11m50s 20m39s 1m42s 10m55s ✗ 1m1s
CVE-2021-38381 8m57s 34m31s 15m35s 17m0s ✗ 7m21s
CVE-2021-38382 13m5s 26m16s 12m35s 12m52s ✗ 12m20s
CVE-2021-39282 18m45s 44m14s 14m54s 12m15s ✗ 19m49s

TinyDTLS

Bug#544819 <1m <1m <1m <1m ✗ <1m
buffer-overflow2 1m53s <1m <1m <1m ✗ <1m
buffer-overflow3 5m51s 7m36s 3m11s <1m ✗ <1m
assertion fail ✗ ✗ ✗ 14m32s ✗ 152m47s

DCMTK

Bug#942 105m57s 156m32s ✗ ✗ ✗ 31m5s
segfault 181m20s 174m53s 14m32s 10m37s 1000m

30s
37m25s

SEGV 213m2s 150m43s ✗ ✗ ✗ 51m58s
CVE-2021-41690 ✗ ✗ ✗ ✗ ✗ 18m
memory leak ✗ ✗ ✗ ✗ ✗ 11m34s

Redis CVE-2024-31227 ✗ ✗ ✗ ✗ ✗ 4m51s
Number 14 10 10 8 9 1 14

for a client connection in parseAssociate in some cases.
If the SUT is not instrumented with ASan or leak detection is
disabled for performance [10], and vulnerabilities are detected
only during crash replay, as in our evaluation and other studies
[32], [33], such issues can remain undetected by conven-
tional fuzzers. The leaked memory per connection is minimal,
and since AFLNet restarts the SUT for each connection (or
HNPFuzzer restarts after a limited number of connections),
the total memory leakage remains insufficient to cause a
crash. In contrast, HSPFuzzer’s connection reuse enables the
accumulation of leaked memory, leading to an out-of-memory
crash, even in the absence of ASan instrumentation.

Similarly, CVE-2024-31227 in Redis demonstrates the ad-
vantage of HSPFuzzer’s superior fuzzing throughput. This
vulnerability arises from an error when parsing the ACL
command in the ACLSetSelector function, which results
in a later crash in the ACLDescribeSelector function. It
is relatively simple to trigger. However, other fuzzers fail to
detect it within 24 hours due to their lower throughput. Given
that Redis v7.x includes about 460 commands, an extensive
number of fuzzing inputs is required for comprehensive test-
ing. HSPFuzzer’s high throughput enables it to uncover this
vulnerability efficiently (within five minutes).

V. DISCUSSIONS AND LIMITATIONS

When connection reuse is effective, users might assume
that HSPFuzzer primarily tests ordinary messages while rarely
exercising prefix messages, as these are typically sent only
at the start of a connection. However, this is not a concern.
First, prefix messages can often be transmitted multiple times
within the same connection, effectively functioning as ordinary
messages once the prefix packets have been sent. For instance,
in FTP, a client may issue USER and PASS commands
multiple times to log in [20]. Second, even in protocols
where prefix messages are restricted to the initial phase of
a connection, HSPFuzzer can be configured to intentionally
restart connections at fixed time intervals to ensure their
inclusion in testing.

HSPFuzzer also features a focus mode, which involves
sending multiple random seed messages before executing the
current input. This approach may increase the likelihood of
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reaching diverse states, particularly when the provided seeds
lack necessary prior messages. In our evaluation, the seeds
were well-formed and did not exhibit this issue, and we
observed that enabling focus mode did not yield an increase
in branch coverage. As a result, while this feature remains
implemented in our prototype, it is not enabled by default and
may be enabled by users when seeds are randomly collected.

Similar to fuzzers operating in persistent mode [4], [21],
crash-triggering inputs saved by HSPFuzzer may not always
contain all the messages necessary to reproduce the crash in
a standalone replay. AFL++ provides a configuration option,
AFL_PERSISTENT_RECORD, to capture additional input
data and mitigate this issue [21]. Alternatively, users may
attach a debugger such as gdb to the SUT for post-mortem
analysis, as demonstrated in [34]. Another viable solution is
to employ snapshot-based techniques, like a feature recently
integrated into syzkaller [35], to preserve the execution state
for debugging.

VI. RELATED WORK

Existing grey-box network protocol fuzzing approaches
could be roughly classified into three categories.

A. Improving fuzzing throughput

Since servers receive inputs via network sockets, several
fuzzers focus on optimizing fuzzing throughput [25], [10],
[24], [14], [13], [15], [12], [22], [17], [36], [37]. Desock
(preeny) [25] hooks the SUT’s socket and redirects it to the
console. Desockmulti [24] improves upon desock by elim-
inating delays associated with interaction support. AFLNet
and AFLNwe [10] were among the first to introduce internet
socket-based input transmission for SUTs.

To address SUT startup overhead, Nyx-Net [14] and SNPS-
Fuzzer [13] employ KVM (Kernel-based Virtual Machine) and
CRIU (Checkpoint and Restore in Userspace) to snapshot the
SUT. NSFuzz [15] reduces delays by manually annotating
the end of message processing. SnapFuzz [12] introduces a
smart deferred forkserver to minimize process forking time.
GreenFuzz [36] optimizes message buffering to reduce fuzzer-
SUT message-passing overhead. Netfuzzlib [37] intercepts
network I/O functions to further decrease latency. However,
these approaches restart or restore the SUT for each input,
leading to unnecessary performance overhead.

HNPFuzzer [17] and EQUAFL [22] adopt a different
approach by eliminating SUT restarts for each input, akin
to persistent mode fuzzing in traditional fuzzers [4], [21].
Additionally, HNPFuzzer utilizes shared memory for message
transmission, further reducing overhead. In this paper, our
findings reveal that connection reuse within inputs can further
enhance fuzzing throughput.

B. Improving seed scheduling and mutation

Several approaches incorporate state coverage to enhance
seed scheduling and mutation strategies [38], [10], [39], [11],
[15], [16]. IJON [38] first introduced state coverage as an
extension to traditional branch coverage [4], using manual

annotations to collect state information. AFLNet [10] builds a
protocol state machine by instrumenting response code parsing
in messages and prioritizing seeds that traverse rare states.
Alternative methods focus on refining server state extraction.
NSFuzz [15] employs manual annotations on specific variables
to track state transitions. StateAFL [11] infers server state by
analyzing snapshots of persistent memory regions. SGFuzz
[16] instruments enum variables in source code to capture
state transitions. Black-box techniques also attempt to infer
state coverage from packet sequences [40] or even higher-level
semantic coverage using log analysis [41].

In terms of seed mutation, recent work has explored inno-
vative strategies [42], [43]. Fuzztruction-Net [42] introduces
fault injection by modifying the SUT’s peer (e.g., the client
when fuzzing a server) to ensure that mutated messages
pass integrity and encryption checks. ChatAFL [43] leverages
LLMs (Large Language Models) to enhance the seed corpus,
generate new seeds, and perform intelligent mutation. These
seed scheduling and mutation optimizations are orthogonal to
HSPFuzzer.

C. Adapting to specific protocols

Several protocol-specific fuzzing techniques have been pro-
posed, targeting TLS [44], [45], DTLS [46], Bluetooth [47],
TCP [48], DNS [49], Matter [50], and MQTT [51]. These
approaches typically integrate domain knowledge into fuzzing
architectures, input generation, and vulnerability detection. For
example, ResolverFuzz [49] utilizes a name server to fuzz
DNS resolvers, while MBFuzzer [51] employs two senders to
fuzz MQTT brokers. Since well-formed inputs are crucial for
effective fuzzing [52], most protocol-specific fuzzers generate
inputs based on protocol specifications [44], [46], [47]. LLMs
have also been employed for learning protocol semantics and
improving input generation [50]. Beyond crash-inducing vul-
nerabilities, these fuzzers also detect specification violations
[44], [46], [50], and LLMs have been utilized in this context
as well [51]. Additionally, differential testing has been widely
adopted to compare different implementations of the same
protocol and identify inconsistencies [45], [48], [49], [51].
HSPFuzzer differs from these approaches as it is designed
for general protocol fuzzing rather than being tailored to a
specific protocol.

VII. CONCLUSION

The primary contribution of this work is the development of
HSPFuzzer, a high-performance network protocol fuzzer. By
reusing connections, HSPFuzzer significantly reduces fuzzing
overhead. Additionally, we introduce an efficient message
provisioning mechanism via a fuzzer stub. HSPFuzzer also
eliminates the need for manually writing message-splitting
code. Experimental results demonstrate that HSPFuzzer sub-
stantially outperforms state-of-the-art fuzzers such as AFLNet,
AFLNwe, SnapFuzz, HNPFuzzer, and AFL++. For instance, it
achieves a 1062× increase in fuzzing throughput over AFLNet.

We believe that HSPFuzzer further advances the field of net-
work protocol fuzzing by reducing unnecessary overhead and
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improving efficiency. Moreover, as it requires no additional
code, it provides a more user-friendly fuzzing solution.
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