
CSFuzzer: A Grey-Box Fuzzer for Network Protocol using
Context-aware State Feedback
Xiangpu Songa, Yingpei Zengb,∗, Jianliang Wuc, Hao Lia, Chaoshun Zuod, Qingchuan Zhaoe and
Shanqing Guoa,∗

aSchool of Cyber Science and Technology, Shangdong University, Qingdao 266237, China
bSchool of Cyberspace, Hangzhou Dianzi University, Hangzhou 310000, China
cSchool of Computing Science, Simon Fraser University, Canada
dDepartment of Computer Science and Engineering, The Ohio State University, America
eDepartment of Computer Science, City University of Hong Kong, China

A R T I C L E I N F O
Keywords:
Protocol fuzzing
State feedback
Software testing

A B S T R A C T
Code coverage-guided fuzzers have achieved great success in discovering vulnerabilities, but since
code coverage does not adequately describe protocol states, they are not effective enough for protocol
fuzzing. Although there has been some work introducing state feedback to guide state exploration in
protocol fuzzing, they ignore the complexity of protocol state space, e.g., state variables have different
categories and are diverse in data type and number, facing the challenges of inaccurate state variable
identification and low fuzzing efficiency.

In this paper, we propose a novel context-aware state-guided fuzzing approach, CSFuzzer, to
address the above challenges. CSFuzzer first divides the state variables into two categories, i.e.,
protocol-state variables and sub-state variables based on the context of the states, and automatically
identifies and distinguishes these two categories of state variables from code. Then, CSFuzzer
uses a new state coverage metric named context-aware state transition coverage to more efficiently
guide fuzzing. We have implemented a prototype of CSFuzzer and evaluated it on 12 open-source
protocol programs. Our experiments show that CSFuzzer outperforms the existing state-of-the-art
fuzzers in terms of code and state coverage as well as fuzzing efficiency. CSFuzzer successfully
discovered 10 zero-day vulnerabilities, which have been confirmed by the stakeholders and assigned
9 CVEs/CNVDs.

1. Introduction
Fuzzing is one of the most popular ways of finding

software vulnerabilities and has been extensively studied [2,
29, 21, 38, 58]. Code-Coverage-Guided (CCG) fuzzing, like
AFL [2], is one of the most popular strategies in these
studies. Despite the great success, it is inefficient for fuzzing
protocol programs because code coverage does not ade-
quately represent the protocol state space [20, 27, 21].

Notably, recent research introduced another strategy,
e.g., State-Coverage-Guided (SCG) fuzzing, to facilitate
state exploration and made great progress [26]. State-guided
fuzzers not only preserve the fuzzing inputs that cover new
control-flow edges as seeds but also retain the inputs that
cover new states. To guide fuzzing based on state coverage,
fuzzers need to identify the variables that indicate the
states of a protocol, i.e., state variables. Existing research
identifies the state variables using the response code field
in the packet [41] or enum-type variables in the source
code [21] or even annotate the variables manually [20].
Since the state variables are diverse in the data type and
number, the performance of existing automatic state variable
identification approaches [27, 21, 57] is reduced by the
inaccuracy of variable identification. In addition, existing

∗Corresponding author
songxiangpu@mail.sdu.edu.cn (X. Song); yzeng@hdu.edu.cn (Y.

Zeng); wujl@sfu.ca (J. Wu); 202020883@mail.sdu.edu.cn (H. Li);
zuo.118@osu.edu (C. Zuo); qizhao@cityu.edu.hk (Q. Zhao);
guoshanqing@sdu.edu.cn (S. Guo)

state-guided fuzzers either use state path coverage [21] or
state transition coverage [41, 57, 42] to guide fuzzing and
thus are faced with the challenges of seed explosion and low
feedback sensitivity.

To address these challenges, we design CSFuzzer by
proposing a novel approach to identify protocol state vari-
ables and a new context-aware state coverage metric to
guide fuzzing. We first analyze 40 open-source protocol
programs containing more than 20 protocols to pinpoint
three characteristics of state variables. These characteristics
include: (1) variables could affect program control flow
upon state changes [21, 57] (i.e., control flow effects); (2)
the semantics of variable names are related to the protocol
attributes described in RFC documents for code readability
reasons [24, 44] (i.e., semantics feature), such as using
msg_type to indicate the message type; and (3) variables
are used in code statements with high code complexity and
call functions with the same prefix or suffix names (i.e.,
code feature). We first identify state variables based on
these three characteristics and divide the variables into two
types, namely protocol-state variables and sub-state vari-
ables based on the execution context of the program. Then,
to better utilize the identified state variables and balance
fuzzing practicality and efficiency, we design a new state
coverage metric named context-aware state transition cover-
age (CAST-Coverage) to guide fuzzing. Specifically, we use
state transition coverage to track the two categories of state
variables separately and consider the protocol state as the

Short Title of the Article

execution context of its corresponding sub-states. Lastly, we
introduce a rarity-preferred seed energy scheduling strategy
to facilitate state exploration.

We have implemented CSFuzzer based on AFL [2] and
evaluated it on 12 widely-used protocol programs in terms
of accuracy of state variable identification, branch and state
coverage, efficiency, and effectiveness. We compare CS-
Fuzzer with eight state-of-the-art fuzzers, i.e., AFL [2],
AFL++ [29], AFLNET [41], StateAFL [38], IJON [20],
SGFUZZ [21], ChatAFL [36], and NSFuzz [42]. Our ex-
periments indicate that CSFuzzer outperforms these fuzzers
by identifying 177.8% more state variables than SGFUZZ,
achieving 38.4% to 809.1% more state coverage and 3.3% to
40.2% more branch coverage than other fuzzers in the 24-
hour campaign. CSFuzzer exhibits superior performance in
terms of effectiveness and efficiency in detecting vulnera-
bilities, discovering 21 vulnerabilities—more than any other
fuzzer in our experiments. It also achieves a speedup of 3.4x
to 44.6x in vulnerability discovery compared to the base-
lines. Moreover, CSFuzzer discovered 10 new vulnerabili-
ties in real-world protocol programs with 9 CVEs/CNVDs
assigned. We provide a link to our code repository for review
purposes, i.e., https://anonymous.4open.science/r/csfuzzer-
8646/.

In summary, this paper makes the following contribu-
tions:
• We propose a novel state variable identification approach

based on three characteristics of the state variable, i.e.,
control flow effects, semantics feature, and code feature.

• We propose a new coverage metric, i.e., context-aware
state transition coverage to keep track of two categories of
state variables and facilitate state space exploration based
on a rarity-preferred energy scheduling strategy.

• We implement a prototype of CSFuzzer and evaluate
it on 12 protocol programs against eight state-of-the-
art fuzzers. Our evaluation shows that CSFuzzer signifi-
cantly outperforms other fuzzers. Additionally, CSFuzzer
discovered 10 new vulnerabilities with 9 CVEs/CNVDs
assigned.

2. Motivation
In this section, we use a use-after-free vulnerability CVE-

2019-15232 that occurs in Live555, a popular RTSP [13]
(Real Time Streaming Protocol) protocol implementation, to
present the motivation and intuition behind our approach.

Listing 1 shows the simplified code that contains the
vulnerability. This vulnerability would be triggered if the
server receives two messages requesting the same WebM [8]
stream file with identical track IDs, e.g., input Sequence 3
in Figure 1 (⟨SETUP, webm, track1⟩ → ⟨SETUP, webm,
track1⟩). Specifically, after receiving the first message, the
server invokes the parsing function in line 3. Then, it calls the
function in line 14 to retrieve the relevant parameters for the
current stream. After that, a new demux trackSource object

1 void handleRequestBytes (...) {

2 if (strcmp(cmdName , "SETUP") == 0) { / / M1 in Fig .1
3 clientSession ->handleCmd_SETUP (...);

4 playAfterSetup = clientSession ->fStreamAfterSETUP;

5 } else if (strcmp(cmdName , "PLAY") == 0)

6 clientSession ->handleCmd_PLAY (...);

7 else if (strcmp(cmdName , "TEARDOWN") == 0)

8 clientSession ->handleCmd_TEARDOWN (...);

9 if (playAfterSetup && strcmp(streamName , url) == 0) {...}

10 if (clientSession != NULL) { handleCmd_withinSession (...); }}

11 void RTSPClientSession :: handleCmd_SETUP (...) {

12 if (trackId != NULL)

13 subsession ->deleteStream(SessionId , trackId); / / UAF free (S1
and S2 in Fig .1)

14 subsession ->getStreamParameters (...); } / / S3 and S4 in Fig .1
15 / / called in getStreamParameters () only i f stream is webm
16 FramedSource* MatroDemux :: newDemuxedTrackByTrackNum (...) {

17 trackSource = new MatroDemuxedTrack(envir(), ...); } / / UAF new
(S4 in Fig .1)

18 void handleCmd_withinSession (...) {

19 if (! strcmp(streamName , urlPreSuffix))

20 if (! strcmp(trackId , urlSuffix)) {...} }

Listing 1: Simplified code in RTSP protocol implementation.
is created in line 17. When receiving the second message, the
server processes the message in the same way as in the first
step. However, since the track ID already exists, the server
proceeds to free the stream object (line 13) and then attempts
to create a demux object (line 17). Lastly, the vulnerability
is triggered because the object returned by envir() has been
freed in line 13.

Figure 1 illustrates three possible message sequences in-
volving three state variables: cmdName, trackId, and streamName

as shown in Listing 1, including state transitions corre-
sponding to each message. The nodes M1 and S1 − S4 are
different values of these three variables, indicating different
states. The cmdName denotes the message type and directly
affects the protocol state transition, and its value SETUP is
represented by Node M1. The trackId is a finer-grained state
variable describing the track identifier of the requested file
and its value, like track1 and track2, corresponds to nodes S1
and S2, representing audio and video streams, respectively.
Similarly, streamName is also a finer-grained state variable,
indicating the requested streaming file. Its value mpeg and
webm showed by nodes S3 and S4, representing MPEG [10]
and WebM type files, respectively. The sequence labeled
Sequence 3 depicts the state transition associated with the
vulnerability scenario.

Existing state-guided fuzzing faces the following two
limitations in discovering such vulnerability.
Existing state-identification approaches are coarse-grained.
Some approaches infer protocol state by identifying certain
fields at fixed offsets in packets [17, 41, 32, 42, 40], such as
response code or message type. However, the response code
alone cannot capture fine-grained internal state transitions,
because the response code for different messages, which
trigger different internal state transitions, could be the same,
e.g., RTSP messages [40]. The fields that describe the
message type (e.g., cmdName in Listing 1) itself are also not
accurate enough. For example, if we only infer the state
according to cmdName, other finer-grained state transitions,
such as S1 − S4, will not be captured, making it difficult

First Author et al.: Preprint submitted to Elsevier Page 2 of 17

Short Title of the Article

SETUP rtsp://.../mpeg/track1 SETUP rtsp://.../mpeg/track1

SETUP rtsp://.../webm/track1 SETUP rtsp://.../mpeg/track2

SETUP rtsp://.../webm/track1 SETUP rtsp://.../webm/track1

Sequence 1

Sequence 2

Sequence 3

State
Transition

State
Transition

State
Transition

SETUP

S4S1M1

track1 webm

S3S2M1
SETUP track2 mpegSETUP

SETUP

S4S1M1

track1 webm

S4S1M1
SETUP track1 webm crash

SETUP

S3S1M1
track1 mpeg

S3S1M1
SETUP track1 mpeg

Figure 1: State transition consisting of three key state variables
in motivation example.

to explore this finer-grained state space. Notably, in many
protocols, state variables include not only those that are
explicitly represented as parameters in messages but also
internal variables maintained by the program, which may
not appear in message fields. Therefore, some recent work
improves state variable identification [20, 21, 42], which
is more precise than the former approaches, to infer states.
However, these approaches can only identify state variables
of a limited number of types. For example, SGFUZZ cannot
identify these three state variables in Listing 1 because all of
them are string types, which are not supported. NSFuzz only
focuses on variables that represent the state of the network
service and therefore cannot identify them. Thus, existing
fuzzers cannot observe the state transitions in Figure 1. As
such, a finer-grained state variable identification is beneficial
for state fuzzers to explore more state space yet unavailable.
Existing state-tracking approaches ignore dependencies
between state variables, resulting in low efficiency. Even
assuming that existing approaches can identify all the states
in Figure 1, they ignore the fact that fine-grained state values
like S1−S4 are subordinate to the state value like M1. Specif-
ically, state path coverage [21] (SP-Coverage) tracks the
whole path of state transition and has the highest feedback
sensitivity [52]. Since the number of interactions with a pro-
tocol implementation can be arbitrarily large, the sequence
of visited states tracked by SP-Coverage can potentially be
infinitely long. Therefore, it is prone to seed explosion when
there are many states executed in the program, preserving
too many seeds that have little variability and are unlikely to
find new errors [49, 27]. State transition coverage [57] (ST-
Coverage) can mitigate seed explosion effectively, similar to
the edge coverage used by AFL [2], but it may reduce the
feedback sensitivity [49]. Specifically, ST-Coverage tracks
transitions from the previous state to the current state, thus
it can only preserve the context between a state and its
neighboring states while losing the context between a state
and its subordinate states. For example, it cannot distinguish
between the same state transitions consisting of streamName

and trackId in the function handleCmd_withinSession in line
18 when they are accessed in different protocol messages,
such as PLAY and TEARDOWN, since these two variables are

not adjacent to the state variable cmdName. This scenario
is particularly common in protocols where there may be
multiple identical fields in different kinds of packets.

3. Challenge and Solution
To design a state guidance approach that can effectively

improve feedback sensitivity and fuzzing efficiency, there
are several challenges need to be addressed.

To construct a fine-grained state guidance approach,
an intuitive approach is to identify more state variables in
protocol implementations, such as trackId and streamName
in Section 2, but this leads to the first challenge: how to iden-
tify more different categories of protocol-relevant state
variables? Theoretically, we could consider all variables
affecting the control flow as state variables, but this usually
results in a decrease in fuzzer performance due to state
explosion. Moreover, unlike existing approaches [20, 21],
which only consider specific types of variables or manual
annotation, the ideal approach must handle a wide variety
and large quantity of protocol-relevant state variables auto-
matically.
Solution: To address this challenge, we first analyzed 40
protocol implementations and summarized the common
coding features found in these implementations. Subse-
quently, based on the initial study, we first extract all the
code statements that used state variables as the scope of
identification and then identify different state variables
through code features and variable names.

After identifying state variables, we need to track the
values of state variables to guide the fuzzer for state space
exploration. Existing state feedback approaches such as SP-
Coverage and ST-Coverage either cause server seed explo-
sion or loss of fine-grained state transition details as shown
in Section 2. Therefore, this leads to the second challenge:
how to track state variables in an effective way that could
improve the feedback sensitivity while maintaining the
fuzzing performance? An ideal state feedback should be
able to balance the feedback sensitivity and fuzzing per-
formance, and it should distinguish between the same state
transitions consisting of steamName and trackId in line 18
of Listing 1 when they are accessed in different protocol
messages.
Solution: To address this challenge, we design a novel state
feedback approach to track state variables and guide the
fuzzer. Specifically, we first classify identified state variables
into two categories based on code feature analysis and the
degree of their influence on the control flow. Then, we track
their state values in different ways to calculate the final
state coverage. Lastly, we design a rarity-preferred energy
scheduling strategy to guide the fuzzer’s exploration of the
protocol state space.

4. CSFuzzer Design
In this section, we first present a general overview of the

design of CSFuzzer, and then introduce the design details

First Author et al.: Preprint submitted to Elsevier Page 3 of 17

Short Title of the Article

Seed
SelectionSeed Pool ExecutionEnergy

Schedule

State Coverage
Feedback

Initial
Seeds

②Context-aware State Feedback

Protocol
Program

Binary

Context-aware
State Tracking

①State Variable Identification

State Variables

Extract Statements
Using State Variables

Code Feature
Analysis

Protocol-relevant
Function Analysis

Call Stack Depth
Analysis

Semantics
Analysis

Figure 2: Overview of the CSFuzzer.

of each functional module individually according to the
workflow.
4.1. Overview

Figure 2 shows an overview workflow of CSFuzzer,
divided into two main phases in the order of execution: state
variable identification, and context-aware state feedback.
State Variable Identification. A protocol can be modeled
as a state machine described by a directed graph, 𝐺 =
(𝑉 ,𝐸) [43]. The set of vertices𝑉 in𝐺 represents a set of pro-
tocol states specified by RFC documents [39] while the set of
edges 𝐸 represents the operation that triggers the transitions
between protocol states in 𝑉 . Programs commonly use vari-
ables to describe state [21]. Thus, we follow such concepts of
the state machine and classify state-related variables into two
categories: protocol-state variables (abbreviated as pstate-
variables) and sub-state variables (abbreviated as sstate-
variables). The pstate-variables are defined as variables
representing the protocol state (𝑉) or the variables corre-
sponding to the operations (in 𝐸) triggering the protocol
state transition, such as cmdName in Listing 1. The sstate-
variables, on the other hand, are those non-pstate-variables
that describe other message fields as well as protocol-related
program operations, and whose values can lead to the execu-
tion of different control flows (i.e., execution branches) while
processing messages, such as trackId and streamName.

CSFuzzer automatically identifies both pstate-variables
and sstate-variables based on features obtained from em-
pirical analysis of protocol implementations. CSFuzzer first
extracts the statements that directly affect the control flow as
the scope of state variable identification. Then, it identifies
state variables used for dispatching protocol behaviors by
analyzing their distinctive code features. Subsequently, CS-
Fuzzer analyzes whether the function in which the variable
is located is related to message processing through function
backtracking, and the depth of the call stack to distinguish
pstate-variables from sstate-variables. Lastly, CSFuzzer uses
semantic analysis to further identify those sstate-variables
that are not characterized by the distinctive code feature in
statements.
Context-aware State Feedback. To track the pstate-variables
and sstate-variables and provide feedback that is aware of the
protocol context, CSFuzzer first instruments the program to
obtain state values depending on the categories of identified

state variables. Then, it generates state coverage of pstate-
variables and sstate-variables based on ST-Coverage and
uses the current pstate-variable as the context in the cov-
erage calculation of sstate-variables (i.e., CAST-Coverage).
Lastly, CSFuzzer puts the input that finds new state coverage
into the seed pool at the end of each fuzzing and uses a rarity-
preferred energy scheduling strategy to allocate more energy
to seeds that cover less-explored states.
4.2. State Variable Identification
4.2.1. Overall Algorithm

The identification process is shown in Algorithm 1,
which consists of three steps: I) extraction of potential state
variables from branch statements and indirect call statements
that directly affect control flows (Section 4.2.2); II) identifi-
cation of candidate pstate-variables and sstate-variables by
analyzing code features and function locations of these state-
ments, as well as the semantics of the variable names (Sec-
tion 4.2.3, 4.2.4, 4.2.6); III) validation of pstate-variables
and sstate-variables through analyzing the call stack depth of
the statements of each variable in candidate pstate-variables
(Section 4.2.5).
Algorithm 1 The Process of State Variable Identification
Input: Module (the Module of LLVM IR)
Output: PStateVars and SStateVars

// Step1: Extract potential state variables from branch and indirect call statements
1: for function ∈ Module do
2: BranchStmts, InDirectStmts ← GETSTATEMENT(function) ⊳ Section 4.2.2
3: for statement ∈ (BranchStmts,InDirectStmts) do
4: Var ← GETSTATEVAR(statement)

// Step2: Identify candidate pstate-variables and sstate-variables
5: if CHECKCODEFEATURE(statement) then ⊳ Section 4.2.3
6: if ISPROTCOLRELEVANT(function) then ⊳ Section 4.2.4
7: CandidatePStateVars.ADD(Var)
8: end if
9: else if ISSUBSEMANTICS(Var) then ⊳ Section 4.2.6

10: SStateVars.ADD(Var)
11: end if
12: end for
13: end for

// Step3: Validate state variables in candidate pstate-variables
14: StackDepths ← GETFUNCSTACKDEPTH(CandidatePStateVars) ⊳ Section 4.2.5
15: for Var ∈ CandidatePStateVars do
16: if ISMINDEPTH(Var,StackDepths) then
17: PStateVars.ADD(Var)
18: else
19: SStateVars.ADD(Var)
20: end if
21: end for

First Author et al.: Preprint submitted to Elsevier Page 4 of 17

Short Title of the Article

4.2.2. Extract Statements that Use State Variables
It is impractical to identify state variables at all code

locations since too many states would slow fuzzing perfor-
mance [27]. On the other hand, tracking states in explicit
assignment statements [21] may cause seed explosion, e.g.,
a 32-bit integer variable representing a field in the packet,
which has 232 different values. Therefore, it is crucial to
identify state variables at appropriate locations.

One characteristic of state variables is that they affect
changes in the control flow when the state changes [21, 57].
The developers often use branch statements, such as if or
switch statements [21], and indirect function call statements
to implement such code logic. Furthermore, these statements
already limit the number of valid values of state variables
by the number of branches, such as the case statements in
switch statements. Thus, we extract these statements as the
scope for subsequent identification of the state variables,
and consider variables in the scope that affect the execution
branches of these statements as the potential state variables.

We complete the extraction based on the LLVM IR since
IR allows us to avoid issues with uninitialized values [27].
For switch statements, we extract each SwitchInst instruction
that directly represents the switch statement in the function.
For indirect call statements, the program usually stores func-
tions in a global array and then uses the array to call the cor-
responding function, as shown in Listing 2. Therefore, based
on this observation, we extract function call instructions
(e.g., call) whose call target could point to a global array.
For if statements, LLVM does not have instructions that
represent them, but instead of using a combination of icmp

and br instructions, while the name of the successors begins
with if.. For example, LLVM IR uses if.then and if.else or
if.end to name the successors when the condition is true and
false, respectively. Thus we examine each combination of
icmp and br instructions and treat those combinations whose
successor names contain if. as if statements and save them.
4.2.3. Analyze the Code Features of State Variable

To identify pstate-variables and sstate-variables, we first
studied 40 protocol implementations shown in Table 1 to
understand the characteristics of these two categories of state
variables, and then automatically identified them based on
these characteristics.

We first used CodeQL [4] to identify the entry point
where the program receives a message. Then, we analyzed
the program for variable values, function names, and code
comments to identify key elements such as variables de-
scribing the message type and functions associated with
different message processing. We scrutinized these elements
and determined whether they had names and descriptions
consistent with the state or message types outlined in RFC
documents and program documentation. Next, we traced
the direction of the message flow to locate the dispatch
code fragments where the program calls the corresponding
processing codes based on these variables.

Protocol Subject Protocol Subject

FTP BFTPD, LightFTP, ProFTPD,
uFTP, Siim/ftp DNS BIND 9

RTSP Live555, RtspServer, media-server COAP libcoap
SSH OpenSSH, libssh2 SIP Kamailio
SMTP Exim, OpenSMTPD DAAP OwnTone
IMAP cyrus-imapd MQTT Mosquitto
NNTP WendzelNNTP, cyrus-imapd DTLS TinyDTLS
HTTP H2O, httpd, nghttp2, nghttp3 LWM2M Wakaama

DHCP dhcpserver, ddhcpd, udhcp,
OpenHarmony/dhcp IPP ippsample

BGP Quagga, BIRD Customized Curl

TLS/SSL OpenSSL, BoringSSL, wolfSSL,
botan, MatrixSSL VNC libvncserver

Table 1
Protocol implementations for state-variable analysis.

Overall, we found that the names of most state variables
are semantically characterized [57, 44] during our analy-
sis, i.e., developers often use keywords describing protocol
properties in RFC documents and their variants to name
state variables, which can also be used to identify them (c.f.,
Section 4.2.6). Then, we found that 35 programs use branch
statements and 5 programs use indirect call statements to
implement the dispatch processing logic based on pstate-
variables (i.e., state machine). This result can also demon-
strate that switch and if statements are the most common
way to implement state machines [45] even in protocol im-
plementations since it is simple and readable, accounting for
90% of our analysis. Similarly, some sstate-variables are also
used to implement the logic for dispatching non-protocol
state-level behavior through these statements in different
protocol states. More importantly, both pstate-variables and
sstate-variables in these statements responsible for dispatch-
ing logic have distinctive code features as the following that
help us identify them.

The state variables in branch statements for dispatching
protocol behavior exhibit three distinctive code features,
illustrated in line 2∼8 of Listing 1. It shows a code snippet for
state variable cmdName in if statements, which are similar to
switch statements. (1) The first feature is that the number of
if statements and case statements that use pstate-variables is
consistent with the number of protocol states (threshold 1),
e.g., lines 2, 5, and 7 in Listing 1. (2) Another feature is that
most branches (threshold 2) that call functions have a com-
mon prefix or suffix between their names, such as handleCmd_.
This practice is commonly employed by developers who
encapsulate processing logic for various stages into a set of
functions following similar naming conventions. (3) Some
developers may opt to incorporate processing code directly
into branches rather than utilizing functions, elevating the
code complexity in these scenarios. To assess this complex-
ity (threshold 3), we employ Cyclomatic complexity [50] as
the metric. Consequently, given a branch statement scenario,
if it fulfills the (1) + (2) or (1) + (3) criteria, we consider
the variable in the conditional statement like cmdName as a
preliminary result of the candidate state variables for further
analysis. In the initial study, the pstate-variables in 37 proto-
col implementations adhere to the criterion (1) + (2), while
in three implementations, they adhere to the other criterion.

First Author et al.: Preprint submitted to Elsevier Page 5 of 17

Short Title of the Article

1 / / global array that stores functions l i ke command_xxx
2 const struct command commands [] = {

3 {"USER", ..., command_user , ...},

4 {"PASS", ..., command_pass , ...},

5 {"LIST", ..., command_list , ...}, ... };

6 int parsecmd(char *str){

7 for (i=0; commands[i].name; i++){ / / i : pstate−variable
8 / / s t r matches the array commands[i]
9 if (! strncasecmp(str , commands[i].name , ...){

10 / / invoke the corresponding function
11 commands[i]. function(str); }}}

Listing 2: Simplified code of indirect call statement in
BFTPD.
We set three thresholds for the above features to identify
these candidate variables, which is explained in Section 6.1.

Further, the state variables in indirect call statements also
exhibit similar code features in the global array called by the
statements as Listing 2 shows. (1) First, the length of the
global array that holds the function is equal to the number
of protocol states (threshold 1), such as commands, where
each function corresponds to the processing code for each
protocol state. (2) Most function names in the array have the
same prefix or suffix string, such as command_ (threshold 2).
Thus, when faced with such an indirect call statement that
satisfies these two characteristics, we consider the variable
used to control the function call as a preliminary result of
candidate state variables, such as the variable i in Listing 2.
We set the same thresholds as threshold 1 and threshold 2 in
branch statements.

It is worth mentioning that with the code feature analysis,
we can identify not only pstate-variables located in the
state machine, but also those sstate-variables that are used
for dispatching other important protocol operations, even
if they have no semantic features, such as next4Bytes in
Live555, which is a key program state for parsing streaming
media files. We will distinguish between pstate-variables and
sstate-variables in the candidate results in subsequent steps.
4.2.4. Analyze if the Function is Protocol-relevant

Although we have identified a few candidate pstate-
variables through code feature analysis (Section 4.2.3), some
results are concentrated in non-protocol message processing
modules, leading to false positives. Therefore, we design an
approach to filter candidate pstate-variables to ensure they
are protocol-relevant.

We identify candidate pstate-variables by backtracking
upward from the function where the variable is located,
ensuring that these variables are within the scope of message
processing functions. Specifically, CSFuzzer first locates
the entry function of processing functions, which often
corresponds to the network event loop function because
most protocol programs constantly listen for network events
within the loop, e.g., 31 of 40 protocol programs in our
analysis fall into this category. Thus, we employ dynamic
and static analysis to identify such entry functions, similar to
NSFuzz [42]. Breakpoints are set on system calls responsible
for receiving data (e.g., read and recv) to capture the runtime
call stack. Then, we identify the functions containing I/O
loops like select and poll_wait, and compare them to the

call stack by scanning upwards from the bottom of the stack
(e.g., main) to locate the first identical function that contains
the I/O loops, which is designated as the entry function. This
is because, during the service processing stage, the network
event loop is usually near the bottom of the extracted call
stack [42], which helps exclude unrelated program loops.
In addition, for protocol programs that do not implement an
event loop, we use the main function of the program as the
entry function.

We then trace back through the call graph to the entry
function, commencing from the function where the candi-
date variable is located. Our goal is to determine whether
this candidate variable falls within the scope of the protocol
module. Thus, if the trace is successful, we consider the
variable as a candidate pstate-variable and proceed with the
subsequent analysis.
4.2.5. Analyze the Call Stack Depth of State Variables

The code feature analysis (Section 4.2.3) can also iden-
tify sstate-variables that are used to dispatch non-protocol
state-level behaviors, such as parsing field-level properties
of packets, thus we further use a dynamic analysis approach
to classify these state variables.

We identify pstate-variables in candidate results by
gauging the level of impact of variables on the control
flow, which can be reflected in the depth of the runtime
call stack associated with these candidate variables. Specif-
ically, CSFuzzer first set breakpoints at the code locations
corresponding to these variables, and then replay packets to
extract each runtime call stack, enabling us to calculate the
depth of these stacks. We consider all variables that affect
the control flow to the greatest extent as the pstate-variables,
specifically those residing in functions closest to the bottom
of the runtime call stack. In cases where multiple variables
share the same depth near the bottom of the stack, they are all
treated as pstate-variables. The intuition is that the protocol
program will first process pstate-variables and then dispatch
corresponding message parsing logic based on its value. For
example, for two variables close to the bottom and top of
the stack respectively, the latter’s influence on the program
is usually limited to the interior of one or more functions.
In contrast, the variable close to the bottom of the stack can
continue to influence the rest of the program after the latter
variable has finished its life cycle.
4.2.6. Analyze the Semantics of Sub-State Variable

Names
While we have identified some sstate-variables with par-

ticular code features, there are quite a few unidentified sstate-
variables that may not have such features. As previously
analyzed, the semantics of variable names related to the
protocol is an important feature of state variables, so we
design a semantic analysis approach to identify remaining
sstate-variables that do not show distinctive code features.
Note that we do not identify pstate-variables by this method,
as it would be easy to identify sstate-variables as pstate-
variables and cause seed explosion.

First Author et al.: Preprint submitted to Elsevier Page 6 of 17

Short Title of the Article

We summarised high-frequency keywords describing
protocol state and attributes from Curl [5] and its cor-
responding RFC documents since it is representative and
implements multiple protocols, and then we extended the
keyword set by adding near-synonyms and acronyms, to
generate a state variable dictionary with 35 keywords for
analyzing the semantics of state variable names. We con-
sider storing high-frequency and generalized state keywords
rather than all attributes of each protocol, avoiding an over-
load of domain-specific knowledge. The complete content
of the dictionary is as follows, which is divided into three
categories. (1) Data Units: operation, message (msg), pdu,
request (req), response, stream, association (assoc), transac-
tion, packet. (2) Protocol State: state, status, code, results,
outcome. (3) Protocol Properties: version, attribute (attr),
mode, flag, qos, type, kind, method, approach, category,
command (cmd), option, property, track, extension, role.
The content in brackets indicates the abbreviation of the
keywords.

We design two methods to analyze the semantics of the
variable: the sub-string matching algorithm and the cosine
similarity algorithm. First, we use the sub-string matching
algorithm and the dictionary to identify sstate-variables, and
if the keyword in the dictionary is part of the variable name,
we consider the variable to be a sstate-variable. Second, to
improve the flexibility of identification, we use the cosine
similarity algorithm based on the word2vec [37] to identify
synonymous names and consider the variable to be a sstate-
variable if the cosine of the angle between the two words
exceeds 0.5. To train the word2vec model, we constructed
a text corpus containing textual descriptions of the protocol
attributes from 30 RFC documents. This corpus served as
the basis for training the CBOW-type model. The training
process used the default parameters as those provided by
Google [7].
4.3. Context-aware State Feedback

In this section, we describe how CSFuzzer constructs
context-aware state feedback based on identified state vari-
ables to facilitate state exploration.
4.3.1. Context-aware State Tracking (CAST-Coverage)

After identifying the state variables, another key chal-
lenge is how to track the state values while balancing feed-
back sensitivity and fuzzing efficiency.

We first consider ST-Coverage to track states rather
than SP-Coverage because the latter is prone to seed explo-
sion [49] and the efficiency is crucial for protocol fuzzing [19,
57, 34]. As mentioned before, ST-Coverage loses most of
the context between states, reducing the sensitivity and
accuracy of feedback. To be efficient and accurate, we
propose CAST-Coverage to track these two categories of
state variables. CAST-Coverage is inspired by state-based
context coverage [1], which is a coverage metric to reflect
the scenarios where the same class behavior performs in
different class states in object-oriented software. In the
scenario of protocol fuzzing, a sub-state is like a class
behavior, while a state is similar to a class state in state-based

context coverage. Accordingly, CAST-Coverage can reflect
different cases where the protocol is in the same sub-state
but different protocol states.

ST-Coverage =
∑

𝑖
𝐵
(

𝑓
(

𝑆𝑖, 𝑆𝑖+1
)) (1)

CAST-Coverage =
∑

𝑖
𝐵
(

𝑓
(

𝑃𝑖, 𝑃𝑖+1
))

+
∑

𝑖
𝐵
(

𝑓
(

𝑄𝑖, 𝑄𝑖+1
)

⊕ 𝑃last
)

(2)
To calculate the CAST-Coverage, CSFuzzer keeps track

of the pstate-variables and sstate-variables in different ways.
We first introduce the formal calculation of ST-Coverage,
as shown in Equation (1), where 𝑆 denotes the union of all
possible values of pstate-variables and sstate-variables, and
𝑆𝑖 and𝑆𝑖+1 indicate the two different state values that are ad-
jacent to each other during program execution, respectively.
ST-Coverage calculates the adjacent state transition values
of𝑆𝑖 and𝑆𝑖+1 using the transition calculation function 𝑓 and
save them as indexes in the bitmap 𝐵. Thus, ST-Coverage
is represented by the state bitmap. Equation (2) shows the
formal process of CAST-Coverage, where 𝑃 and 𝑄 are the
state values of pstate-variables and sstate-variables respec-
tively. CAST-Coverage first uses ST-Coverage to capture
protocol state transitions constructed by pstate-variables.
Subsequently, to capture fine-grained state transitions within
different protocol states, we maintain a global variable 𝑃𝑙𝑎𝑠𝑡to record the most recent pstate-variable executed as the exe-
cution context of subsequent sstate-variables, and then it will
participate in the calculation of state transitions of sstate-
variables through the exclusive or operation ⊕. In CAST-
Coverage, we use the function ijon_hashint in IJON [20]
to implement the transition calculation function 𝑓 . With
this approach, CSFuzzer will treat S4 → S1 in Sequence 3

in Figure 1 as a distinct state after receiving Sequence 1

and Sequence 2 and preserve such input like Sequence 3 to
the corpus, whereas ST-Coverage loses perception of state
transitions in Sequence 3.
4.3.2. State Exploration Strategy

CSFuzzer applies two approaches to utilize state cover-
age to facilitate state exploration.
State Coverage Feedback. CSFuzzer collects state cov-
erage at each fuzzing execution via the shared memory
called state_memory to enhance the fuzzer’s state awareness,
where each location of the memory corresponds to a state.
Thus, CSFuzzer can save those inputs that cover new state
coverage, even if they do not cover the new code coverage, to
the seed pool to be used as a new starting point for iteratively
exploring the state space.

CSFuzzer uses another shared memory called histori-
cal_state_memory of the same size as state_memory col-
lecting state coverage to record the historical state coverage
throughout the fuzzing. In historical_state_memory, each
position corresponds to a specific state, with the value at
that position representing the number of state hits (i.e.,
the number of times each state is hit by all inputs during
fuzzing). We evaluate whether a state is rarely explored by

First Author et al.: Preprint submitted to Elsevier Page 7 of 17

Short Title of the Article

comparing its hit count to the average number of state hits
across historical_state_memory. If the count falls below this
average, the state is considered rare. We will assign different
energies to seeds based on state coverage to facilitate the
exploration of rare state spaces.
Energy Schedule. Given a previously executed seed, we cal-
culate the ratio of rare states in the historical state coverage
for that seed as follows.

𝑟𝑎𝑟𝑒𝑅𝑎𝑡𝑖𝑜 =
∑

𝑖∈𝑟𝑎𝑟𝑒𝑆𝑡𝑎𝑡𝑒𝑠,𝑠𝑡𝑎𝑡𝑒𝐴𝑟𝑟𝑎𝑦[𝑖]>0 1
∑

𝑖∈𝑎𝑙𝑙𝑆𝑡𝑎𝑡𝑒𝑠,𝑠𝑡𝑎𝑡𝑒𝐴𝑟𝑟𝑎𝑦[𝑖]>0 1
(3)

where rareStates stores the set of rare states, stateArray is
the array that holds the state coverage for the given seed, and
allStates stores the set of all explored states during fuzzing.

CSFuzzer implements a rarity-preferred energy schedul-
ing strategy to guide the fuzzer to spend more time exploring
less-explored state space since seldomly exercised states
harbor more undiscovered adjacent states or code logics [21,
56].

We then decide on the energy to be assigned based on
the magnitude of the rareRatio, as shown in the following.

𝐸𝑒(𝑠) =

{

𝐸𝑜𝑟𝑖(𝑠), if rareRatio ≤ 50%
2𝐸𝑜𝑟𝑖(𝑠), if rareRatio > 50% (4)

where 𝐸𝑜𝑟𝑖(𝑠) is the original energy assigned to the seed s by
the original fuzzer AFL [2].

Finally, to avoid the energy beyond the maximum limit
supported by the fuzzer, we constrain the energy 𝐸𝑒(𝑠).

𝐸𝑒(𝑠) = 𝑀𝐼𝑁
(

𝐸𝑒(𝑠), 𝐸MAX
) (5)

where 𝐸𝑀𝐴𝑋 is the max energy supported by AFL.

5. Implementation
CSFuzzer is implemented on AFL [2] and LLVM, and

has two major components, namely state variable identifica-
tion, and context-aware state feedback.
State Variable Identification. We implement an LLVM
pass to identify state variables and use GLLVM [16] to
build the entire IR. We then use the GDB script [6] to set
breakpoints automatically to the system call that receives
data and then dump the call stacks while receiving messages
as auxiliary information to identify the entry function of
message processing functions. We also use the GDB script
to calculate the depth of the call stack to identify pstate-
variables. The identification process is semi-automated, as
manual involvement is required for starting protocol pro-
grams, and does not require the involvement of expert knowl-
edge.
Context-aware State Feedback. We define a series of trace
functions for different data types of state variables and use
the same LLVM pass to insert the trace functions into IR

Subject Protocol Version Language Transport Layer

PureFTPD FTP c21b45f C TCP
BFTPD FTP v5.7 C TCP
ippsample IPP 1ee7bcd C TCP
CUPS IPP 07ec506 C TCP
OpenSSL TLS 12ad22d C TCP
Live555 RTSP ceeb4f4 C++ TCP
DCMTK DICOM 7f8564c C++ TCP
Exim SMTP 38903fb C TCP
Dnsmasq DNS v2.73rc6 C UDP
Curl Custom aab3a7 C TCP/UDP
MbedTLS DTLS e483a7 C UDP
TinyDTLS DTLS 06995d4 C UDP

Table 2
Target protocol implementations.

and then link the IR to a new binary for fuzzing. We then
implement the feedback on top of AFL and extend a new
bitmap of size 214 to collect state coverage to avoid conflicts
between code and state coverage.

6. Evaluation
We evaluate CSFuzzer by answering the following re-

search questions:
• RQ1. How many state variables can CSFuzzer identify,

and what is the proportion of false positives and false
negatives?

• RQ2. Can CSFuzzer achieve higher branch coverage than
other existing fuzzers?

• RQ3. How does the state-space exploration capability of
CSFuzzer compared to existing fuzzers?

• RQ4. How efficiently does CSFuzzer discover protocol
state vulnerabilities, and can it discover new vulnerabili-
ties?

• RQ5. How each component affects the results of CS-
Fuzzer?

6.1. Experiment Setup
Target Programs. We selected 12 widely used open-source
protocol implementations for evaluating CSFuzzer, as shown
in Table 2, with more than 10 different protocols selected
(Curl [5] implements multiple protocols). All these protocol
implementations have been fuzzed in the evaluation of
existing fuzzing works [41, 21, 28].
Baselines. Since our goal is to evaluate the impact of dif-
ferent state feedback strategies on protocol fuzzing, we se-
lected eight state-of-the-art (SOTA) fuzzers to make the
comparison, including two CCG fuzzers like AFL [2] and
AFL++[29], and five SCG fuzzers, AFLNet [41], IJON [20],
StateAFL [38], SGFUZZ [21], ChatAFL [36], and NS-
Fuzz [42].

Apart from AFLNet, StateAFL, ChatAFL, and NSFuzz,
other fuzzers need additional support to fuzz protocol pro-
grams. For example, for the AFL-based fuzzers, such as
AFL, AFL++, IJON, and CSFuzzer, we modify the source
code to enable the program to read the input from files or
the standard input (stdin) instead of using desock [12] due to
compatibility issue [47], and our modifications do not affect
the normal logic of the protocol. Since IJON requires manual

First Author et al.: Preprint submitted to Elsevier Page 8 of 17

Short Title of the Article

annotation of state variables, we use the ijon_push_state

function to annotate the same state variables as CSFuzzer
identified for fairness. We also set all the AFL-based fuzzers
to skip deterministic for better performance [29]. For SG-
FUZZ, we use netdriver to support protocol fuzzing as
suggested.
Environment. We ran all experiments on two local ma-
chines, each of which has two Intel(R) Xeon(R) Gold 6226R
CPUs with 32 logical cores, 256 GB RAM, and an Ubuntu
20.04.1 LTS system. To mitigate randomness, we repeated
the fuzzing campaign 10 times.
Evaluation Metrics. We conducted all evaluations on the
Docker container, using the same building processes to
provide the same independent environment, including the
same initial seeds and dictionaries. We use the gcov tool to
measure the branch coverage and count the number of unique
crashes by running all seeds on recompiled programs with
AddressSanitizer and stack hash [33].
Threshold Setting in State Variable Identification. We
set three thresholds in our evaluation for the code feature
analysis in Section 4.2.3. First, we set the minimum number
of branch statements with the same condition, including the
case and if statements, and the length of the global array
to three, i.e., threshold 1, since it can reflect the number of
protocol states. Since there is a gap between protocol design
and implementation, e.g., the RFC [13] for RTSP protocol
defines 12 message types, but Live555 only uses seven
branches to implement the state machine, we do not iden-
tify state variables as described in protocol specifications.
Instead, we set the value to three to ensure that CSFuzzer can
maximize match different protocol implementations and fil-
ter out codes that are not used to dispatch protocol important
behaviors. We then set the percentage of branch statements
and global arrays that call functions with the same prefix or
suffix name to 70% to represent the majority of cases, i.e.,
threshold 2, to avoid the static analysis being too restrictive
or too broad. Finally, we set the code complexity detection
threshold for branch statements to 30, i.e., threshold 3, which
is used in the software engineering field to indicate that the
current code belongs to a highly complex module [3, 25]. All
threshold settings are determined based on the investigation
and analysis of the 40 protocol programs in Table 1.
6.2. State Variable Identification Effectiveness

(RQ1)
To evaluate the effectiveness of state variable identifica-

tion, we manually analyzed how many of the state variables
recognized by CSFuzzer were correct and how many state
variables were missed by CSFuzzer, and compared them to
SGFuzz.

First, for the state variables that have been identified by
CSFuzzer and SGFUZZ, we manually analyzed each state
variable and its code comment, comparing them to the de-
scriptions in RFC documents and program documentation,
to determine the percentage of false positives (FP) in the re-
sults. Second, for state variables that are not identified in pro-
grams, we construct two ground truths and then determine

Subject
SGFUZZ CSFuzzer

Total Num FP RFN Total Num PState-Variable SState-Variable
Num FP RFN Num FP RFN

PureFTPD 6 5 11 12 1 0 1 11 2 1
BFTPD 0 0 0 12 1 0 2 11 5 0
ippsample 11 1 61 72 1 0 8 71 8 7
CUPS 36 8 118 130 1 0 7 129 11 23
OpenSSL 239 169 237 680 3 0 2 677 404 29
Live555 4 0 122 132 1 0 0 131 6 0
DCMTK 66 7 62 102 1 0 5 101 11 30
Exim 30 23 115 201 1 0 0 200 85 6
Dnsmasq 0 0 72 89 0 0 0 89 17 0
Curl 303 145 227 531 8 0 6 523 239 93
Mbedtls 51 23 53 122 1 0 7 121 55 14
TinyDTLS 4 0 15 17 1 0 6 16 0 2

Table 3
Results of state variable identification for SGFUZZ and CS-
Fuzzer.

Subject Total Num SGFUZZ CSFuzzer
Total FP CFN Total FP CFN

PureFTPD 24 6 5 23 12 2 14
TinyDTLS 53 4 0 49 17 0 35
ippsample 119 11 1 109 72 8 47

Table 4
Complete state variable analysis for SGFUZZ and CSFuzzer.

the false negative results of CSFuzzer and SGFUZZ based
on RFC documents and other documentation. (1) Relative
ground truth. Since thousands of variables are declared in
the program, e.g., we found 30k variable-defining statements
in OpenSSL through CodeQL [4], it is almost impossible to
analyze each of them, thus we first merge the identification
results of SGFUZZ and CSFuzzer and then remove the false
positive results as a set of valid state variables to analyze
the relative false negatives (RFN) in results. (2) Complete
ground truth. We chose three programs, PureFTPD, Tiny-
DTLS, and ippsample, for constructing a complete ground
truth to analyze the complete false negatives (CFN) because
they have a small code base to facilitate manual analysis. To
reduce the impact of false positives from human analysis,
we had two researchers perform the analysis independently
and then confirm and correct the results against each of their
analysis results.

Table 3 shows the overall results of the state variables
that SGFUZZ and CSFuzzer identified in each program. On
average, CSFuzzer identified 175 state variables and found
177.8% more state variables than SGFuzz. Then, there are
40.1% FP and 13.7% RFN results in the state variable iden-
tification results of CSFuzzer compared to SGFUZZ, which
has 50.8% FP and 67.2% RFN, respectively. In addition,
we divided the experimental programs into two categories:
one was included in the initial study shown in Table 1 and
the other was not, and then assessed whether there was a
significant difference between the two FP/RFN ratios based
on the Mann Whitney U-test [31]. The p-value result was
0.68, which indicates no significant differences, proving the
generality of our identification method.

Table 4 shows the CFN results for SGFUZZ and CS-
Fuzzer in PureFTPD, TinyDTLS, and ippsample where Total
Num denotes the total number of state variables in programs.
Besides, in the complete manual analysis, CSFuzzer identi-
fied on average 51.5% of the state variables, which is five
times more than SGFUZZ, with 9.8% FP and 49% CFN

First Author et al.: Preprint submitted to Elsevier Page 9 of 17

Short Title of the Article

results, compared to 28.6% FP and 92.3% CFN results for
SGFUZZ. Therefore, compared to existing work, CSFuzzer
has lower FP and CFN rates for state variable identification.
This avoids saving redundant test cases due to protocol-
independent state variable changes during fuzzing and im-
proves the efficiency of state space exploration.

With further investigation of FNs, we found two possible
causes of FNs in pstate-variable identification: (1) The pro-
gram may use different state variables to represent the same
protocol state. We treat only one of the variables located
at the dispatch codes responsible for protocol state as the
pstate-variable, and the others as sstate-variables, leading to
FNs. However, this does not affect the correct construction
of the state context, since such dispatch code is usually
the entry for message processing, the pstate-variable at this
location can accurately mark the state context of all sstate-
variables during subsequent processing. (2) Some program
supports two or more protocols, e.g., IPP protocol [14] is
based on HTTP, which may cause CSFuzzer to treat the
pstate-variable from only one of the protocols as the pstate-
variable and others as sstate-variables. Regarding the FNs in
sstate-variable identification, we summarized two reasons.
(1) Most of the sstate-variables in programs are not directly
used in branch statements, so they are excluded by CSFuzzer.
(2) The semantics of some sstate-variable names do not
match with our dictionary since only high-frequency and
important protocol attributes are considered to be identified
when constructing the dictionary.

We also investigate the FPs in state variable identifica-
tion and conclude the following three possible reasons: (1)
We use the complete program rather than a single function
for evaluation, which caused CSFuzzer to identify vari-
ables in code that current fuzzing will never execute into
as state variables. (2) Since CSFuzzer does not restrict
the identification range of sstate-variables through semantic
analysis, it may misidentify variables in other non-protocol
modules as state variables, such as the cryptography module
in OpenSSL and Curl. (3) The variables in the remaining
results are mainly used to store configuration information
or logs, and the values of these variables are derived from
configurations or options, thus the state transitions hardly
change once they are covered. Overall, 40.1% of FP results
are tolerable for fuzzing because most (more than 62%) of
them are located in code paths that are never reached during
fuzzing, and the value of 20% of the variable values do not
change frequently, they do not have a large impact on state
feedback.
6.3. Branch Coverage Results (RQ2)

We evaluate the impact of the state feedback of CSFuzzer
on code exploration and analyze the branch coverage since
code coverage is also an important metric for quantifying
fuzzers’ capabilities [33]. To evaluate branch coverage, we
first adopted the standard 24-hour fuzzing configuration.
Additionally, we set evaluation configuration with the same
number of fuzzing iterations (i.e., 1 million) for all fuzzers

as mentioned in [46, 19]. This setup creates a significant ad-
vantage for slower fuzzers, such as AFLNET and StateAFL,
ensuring a fair assessment of the state feedback strategies for
each fuzzer.

Table 5 shows all campaigns’ average branch coverage
results after 24 hours and 1 million fuzzing iterations. Over-
all, CSFuzzer achieves more branch coverage compared to
other fuzzers in most cases. Specifically, at the 24-hour
setting, CSFuzzer achieves on average 3.7% more branch
coverage than AFL, 3.3% than AFL++, 37% than AFLNet,
5.8% than IJON, 25.3% than StateAFL, 40.2% than SG-
FUZZ, 13.4% than ChatAFL, and 11.9% than NSFuzz. Fur-
thermore, in the setting of 1 million iterations, CSFuzzer also
outperforms others, and could achieve 2.8% more branch
coverage than AFL, 2.2% than AFL++, 7.0% than AFLNet,
3.3% than IJON, 6.4% than StateAFL, 18.3% than SGFUZZ,
4.8% than ChatAFL, and 4.0% than NSFuzz. We also use the
Mann-Whitney U-test [31] to calculate the p-value, and most
companies have a p-value less than 0.05, indicating a signifi-
cant statistical difference between CSFuzzer and others. Due
to the space constraint, we provided it in Appendix A.

We further investigate why CSFuzzer performs better
compared to other fuzzers. The first reason is better state
guidance capabilities of CSFuzzer. Specifically, CSFuzzer
performs better than other SOTA state-guided fuzzers under
the same limit of iterations, proving the effectiveness of
CAST-Coverage that is constructed with more categories of
state variables. It is worth noting that CSFuzzer and IJON
track the same state variables but apply different state guid-
ance, which demonstrates that CAST-Coverage can more
effectively facilitate code exploration, and therefore perform
better in both short-term (1 million iterations) and long-
term (24 hours) test cycles. Similarly, AFLNet and NSFuzz
utilize only response codes, so the state feedback granularity
is coarser than CSFuzzer. Second, CSFuzzer effectively
balances feedback sensitivity and fuzzing efficiency by cat-
egorizing variables and tracking them differently, whereas
IJON and SGFUZZ face the problem of seed explosion.
Specifically, IJON tracks four consecutive state values and
thus may have seed explosion problems when the number of
states is large, leading to unstable performances. SGFUZZ
has a more severe seed explosion potential because it tracks
state variables on all paths, such as saving 90k and 80k seeds
in OpenSSL and Curl, respectively. Furthermore, since the
state feedback in CSFuzzer allows for the execution of less-
likely reached code that can be executed under certain states,
CSFuzzer outperforms AFL and AFL++. Since MbedTLS
and TinyDTLS have a smaller code base, CSFuzzer achieves
almost identical branch coverage as AFL and AFL++. The
netdriver used by SGFUZZ may prevent fuzzing from start-
ing properly on some programs. For example, it does not sup-
port the fork system call, thus SGFUZZ could not track cov-
erage and only preserve the initial seeds in PureFTPD and
Exim [21]. On the other hand, it prompts that connections
were terminated by peers when testing CUPS, resulting in
most input not being received by the program. Lastly, since

First Author et al.: Preprint submitted to Elsevier Page 10 of 17

Short Title of the Article

Subject Branch Coverage for 24H Branch Coverage for 1M
AFL AFL++ AFLNet IJON StateAFL SGFUZZ ChatAFL NSFuzz CSFuzzer AFL AFL++ AFLNet IJON StateAFL SGFUZZ ChatAFL NSFuzz CSFuzzer

PureFTPD 1346 1373 1121 1390 989 633 1138 1336 1404 1280 1272 1090 1176 1066 633 1122 1281 1298
BFTPD 452 496 468 488 424 368 467 464 512 453 424 487 476 467 368 477 483 492
ippsample 3219 3204 2894 3220 - 2914 2938 - 3273 2886 2965 2786 2904 - 2941 2863 - 2951
CUPS 3878 3986 3340 4032 - 3046 3736 - 4121 3606 3607 3348 3596 - 3046 3877 - 3629
OpenSSL 12311 12054 11352 11996 11064 11549 - 11857 12659 11592 11647 11677 11427 11606 11702 - 11680 11714
Live555 2761 2775 2102 2367 2127 2230 2236 2153 2798 2112 2185 1886 2032 2142 2034 1977 2197 2227
DCMTK 8369 7826 3062 8728 6560 6896 - 6499 8615 7407 7825 7720 7833 7623 7137 - 6418 7846
Exim 3255 2970 3116 3347 3253 2714 3258 3213 3282 2703 2804 2741 2743 2756 2714 2762 2736 2784
Dnsmasq 1173 1157 804 1064 838 - - 1144 1184 1099 1089 1094 1045 1037 - - 1094 1104
Curl 8755 9617 - 7627 - 4542 - - 9641 5162 5332 - 5171 - 5099 - - 5209
MbedTLS 1562 1565 - 1556 - 1554 - - 1563 1545 1544 - 1539 - 1545 - - 1545
TinyDTLS 620 620 517 611 515 - - 591 620 578 557 531 580 548 - - 585 597
Improvement 3.7% 3.3% 37.0% 5.8% 25.3% 40.2% 13.4% 11.9% 2.8% 2.2% 7.0% 3.3% 6.4% 18.3% 4.8% 4.0%

Table 5
Average branch coverage after 24 hours (left), and branch coverage after 1 million fuzzing iterations (right). The Improvement
indicates the percentage improvement of CSFuzzer over each corresponding fuzzer, and the symbol - indicates that the fuzzer
does not support that subject.

Subject State Coverage for 24H State Coverage for 1M
AFL AFL++ AFLNet IJON StateAFL SGFUZZ ChatAFL NSFuzz CSFuzzer AFL AFL++ AFLNet IJON StateAFL SGFUZZ ChatAFL NSFuzz CSFuzzer

PureFTPD 151 161 123 297 117 8 136 134 327 143 128 138 285 127 8 132 101 292
BFTPD 715 681 760 1338 431 106 636 784 2508 421 456 1002 719 519 106 893 996 2506
ippsample 471 445 189 666 - 223 235 - 712 271 367 194 300 - 270 238 - 371
CUPS 1884 2068 449 2257 - 469 530 - 2541 648 670 456 994 - 269 540 - 1543
OpenSSL 743 739 661 704 626 604 - 636 766 687 667 694 678 646 653 - 637 696
Live555 253 254 169 270 232 223 197 245 553 302 294 232 309 361 314 210 286 527
DCMTK 239 139 140 275 183 161 - 172 334 184 109 199 219 183 161 - 164 269
Exim 190 205 174 530 109 80 247 180 526 168 213 108 320 109 80 255 106 511
Dnsmasq 283 301 231 423 180 - - 250 663 238 315 238 247 192 - - 230 420
Curl 1908 1843 - 981 - 503 - - 2112 702 1089 - 930 - 751 - - 928
MbedTLS 259 257 - 255 - 224 - - 261 259 269 - 196 - 271 - - 274
TinyDTLS 238 246 183 330 91 - - 209 446 226 234 183 176 162 - - 187 347
Improvement 85.4% 90.9% 205.3% 38.4% 243.2% 809.1% 218.5% 134.4% 105.7% 95.7% 129.3% 57.7% 151.9% 703.0% 132.5% 131.1%

Table 6
Average CAST-Coverage after 24 hours (left), and CAST-Coverage after 1 million fuzzing iterations (right). The Improvement
indicates the percentage improvement of CSFuzzer over each corresponding fuzzer, and the symbol - indicates that fuzzer does
not support that subject.

ChatAFL currently only supports text-based protocols [36],
it only supports six protocol programs as shown in Table 5.

We further analyzed the reasons why CSFuzzer under-
performs compared to some fuzzers in certain scenarios.
First, CAST-Coverage is less sensitive in terms of feedback
compared to IJON and SGFuzz. Moreover, when the num-
ber of observed pstate-variable values is limited, CAST-
Coverage degrades to ST-Coverage, further reducing cover-
age exploration. Thus, in scenarios where the number of state
values is small, such as in DCMTK and Exim, CSFuzzer
performs worse than IJON. Second, CSFuzzer is imple-
mented based on AFL, while AFL++ incorporates a range
of advanced fuzzing strategies beyond those in AFL. Con-
sequently, CSFuzzer may be outperformed by AFL++ on
certain targets. Similarly, ChatAFL leverages large language
models to generate more diverse and high-quality test cases,
which are difficult to generate through traditional mutation
strategies within a limited time budget. Therefore, in such
cases, CSFuzzer also lags behind ChatAFL. Nonetheless,
we believe that CSFuzzer is complementary to AFL++ and
ChatAFL, which can also be easily integrated into these
advanced fuzzers to further enhance state exploration per-
formance.

6.4. State Coverage Results (RQ3)
To evaluate the ability of CSFuzzer to explore more state

spaces, we compare the state coverage of CSFuzzer with
other fuzzers. We measured the state coverage of a fuzzer
as the number of paths in the state bitmap that is constructed
across the execution of all seeds generated throughout the
campaign and from the initial corpus [21]. To ensure fair-
ness, we also set up a 24-hour and 1 million evaluation for
state coverage as mentioned in Section 6.3.

Table 6 shows the average CAST-Coverage results after
24 hours and 1 million fuzzing iterations for all cam-
paigns. Overall, CSFuzzer achieves more state coverage
than other fuzzers in most programs. On average, CS-
Fuzzer achieves 85.4% more state coverage than AFL, 90.9%
than AFL++, 205.3% than AFLNet, 38.4% than IJON,
243.2% than StateAFL, 809.1% than SGFUZZ, 218.5% than
ChatAFL, and 134.4% than NSFuzz, respectively, in the
setting of 24 hours. Similarly, CSFuzzer can achieve higher
state coverage for the same number of iterations. On average,
CSFuzzer achieves 105.7% more state coverage than AFL,
95.7% than AFL++, 129.3% than AFLNet, 57.7% than
IJON, 151.9% than StateAFL, 703% than SGFUZZ, 132.5%
than ChatAFL, and 134.4% than NSFuzz, respectively. We
provide the p-value of these results in Appendix A.

Through further investigation, we found that CSFuzzer
improves feedback sensitivity by maintaining state context

First Author et al.: Preprint submitted to Elsevier Page 11 of 17

Short Title of the Article

Subject Bug AFL AFL++ AFLNET IJON StateAFL SGFUZZ ChatAFL NSFuzz CSFuzzer

DCMTK

942 - - - - - - - - 5.41h
LEAK - - - - - - - 0.49h
SEGV 2.76h 1.97h 7.84h 0.29h 6.51h - - 6.12h 0.07h
CVE - - - 22.31h - - - - 23.17h
STACK 0.15h 0.15h - 0.17h 0.16h - - 0.24h 0.15h

Live555

CVE1 1.05h 0.96h - 1.05h - 1.47h - - 0.85h
CVE2 0.43h 0.37h - 7.10h - 0.31h - - 0.29h
CVE3 0.06h 0.07h 4.03h 7.11h 3.86h 0.71h 0.42h 3.54h 0.39h
CVE4 0.05h 0.05h 5.88h 2.95h 6.17h 0.36h 2.14h 5.51h 0.04h

Dnsmasq

CVE 0.61h 0.69h 11.49h 1.86h 10.53h - - 10.81h 0.51h
STACK1 0.65h 0.01h 4.14h 4.14h 4.12h - - 4.14h 0.13h
STACK2 0.61h 0.74h 11.49h 1.87h 5.46h - - 5.34h 0.51h
HEAP1 0.01h 0.01h 0.67h 0.04h 0.73h - - 0.65h 0.01h
HEAP2 0.84h 0.93h - 4.56h - - - - 0.61h
HEAP3 0.09h 0.42h 3.91 0.08h 2.62h - - 2.45h 0.08h

TinyDTLS

544819 1.76h 0.86h - 3.63h - - - 4.52h 0.37h
STACK1 0.01h 0.01h 0.07 0.01h 0.09h - - 0.01h 0.01h
STACK2 0.01h 0.01h 0.47 0.08h 0.57h - - 0.01h 0.01h
STACK3 0.01h 0.10h 0.11 0.02h 0.15h - - 0.01h 0.01h

ippsample CNVD 6.20h 3.22h 16.47 1.22h - 6.92h - - 2.03h
CUPS CVE - - - - - - - - 6.22h
Average Factor 3.9x 3.5x 44.6x 10.9x 42.3x 3.4x 27.3x 31.6x

Table 7
Time to exposure for all vulnerabilities found in experiments. The Average Factor indicates the factor improvement of CSFuzzer
compared to each corresponding fuzzer. The symbol - means that the fuzzer cannot expose the bug within 24 hours or does not
support that subject.

for each sstate-variable, which strikes a balance between
retaining fuzzing efficiency and feedback sensitivity, and
so exhibits the best state exploration capability under most
protocol programs. IJON slightly outperforms CSFuzzer
when fuzzing PureFTPD and Exim, as Table 6 shows. This
is because IJON tracks the four consecutive state variables,
which have higher feedback sensitivity. Meanwhile, IJON
can avoid seed explosion problems since these two programs
have a limited number of states. However, based on the
state and branch coverage results, we believe that CSFuzzer
performs more efficiently and consistently than IJON in most
protocol implementations. It is necessary to clarify that since
SGFUZZ does not execute successfully in some programs, it
has the same results in the 24 hours and 1 million setups, e.g.
it does not support the fork system call [21] without being
able to keep track of the coverage, which results in not being
able to save new seeds in PureFTPD.
6.5. Vulnerability Detection (RQ4)

To evaluate the vulnerability detection capability of CS-
Fuzzer, we analyze it from two perspectives: the efficiency
of vulnerability discovery in the benchmark program and the
discovery of new vulnerabilities. We responsibly disclosed
all vulnerabilities in our evaluation to the stakeholders, and
at the time of paper writing, all of them have been fixed.

Table 7 shows the average time to exposure for all
vulnerabilities found in the benchmark program. The Bug
indicates the simplified vulnerability identifier, and due to
space constraints, we provide the full description for bugs
in the supplemental file. CSFuzzer can discover all these 21
protocol vulnerabilities in evaluation, while AFL, AFL++,
AFLNET, IJON, StateAFL, SGFUZZ, ChatAFL, and NS-
Fuzz were able to discover 17, 17, 12, 18, 12, 5, 2, and 13
of these vulnerabilities, respectively. On average, CSFuzzer
triggers these vulnerabilities 3.9x faster than AFL, 3.5x than
AFL++, 44.6x than AFLNET, 10.9x than IJON, 42.3x than

StateAFL, 3.4x than SGFUZZ, 27.3x than ChatAFL, and
31.6x than NSFuzz.

Table 8 shows the basic information about 10 new vul-
nerabilities discovered by CSFuzzer, and 9 CVE/CNVD
IDs have been assigned, where CVE-2022-43272 and CVE-
2023-50656 in DCMTK correspond to LEAK and SEGV of
DCMTK in Table 7, and the two new bugs of ippsample and
CUPS also correspond to Table 7, respectively. CSFuzzer
could find them more efficiently than all other fuzzers except
for ippsample. On the other hand, we also evaluated CS-
Fuzzer’s vulnerability detection capabilities in a well-known
MQTT protocol program, NanoMQ [15] for generalizability,
where CSFuzzer could discover five new vulnerabilities. We
evaluated whether other baseline fuzzers can discover them
as well; specifically, AFL, AFL++, and IJON could discover
three bugs, e.g., CVE-2023-33658, CVE-2023-33659, and
CVE-2023-33660. AFLNet, StateAFL, and ChatAFL could
only find CVE-2023-33658 in 24 hours, while SGFUZZ does
not support fuzzing this project, thus, it cannot find all of
them.

Overall, CSFuzzer has good vulnerability detection ca-
pabilities in different types of protocol implementations,
which is attributed to the fact that context-aware state feed-
back not only facilitates the exploration of protocol states
while maintaining high fuzzing efficiency, which enhances
protocol vulnerability discovery than other fuzzers. It is
worth noting that CSFuzzer may perform worse than AFL
and AFL++ in detecting certain easily triggered vulnerabil-
ities (e.g., CVE-3 in Live555 and STACK1 in Dnsmasq).
This is because CSFuzzer saves messages that cover new
states as seeds, which increases the length of the seed queue.
Compared to AFL, CSFuzzer may delay the selection of sub-
sequent seeds, thereby reducing its efficiency in triggering
such vulnerabilities within a short time.

First Author et al.: Preprint submitted to Elsevier Page 12 of 17

Short Title of the Article

Subject Version Bug Type CVE/CNVD CVSS
DCMTK v3.6.7 Memory leak CVE-2022-43272 7.5
DCMTK v3.6.7 Memory leak CVE-2022-43272 7.5
DCMTK v3.6.7 Segmentation fault CVE-2023-50656 7.5
ippsample #baf8b77 Segmentation fault CNVD-2022-44199 4.6
CUPS v2.4.2 Heap-buffer overflow CVE-2023-32324 7.5
NanoMQ v0.17.2 Heap-buffer overflow CVE-2023-33658 7.5
NanoMQ v0.17.2 Heap-buffer overflow CVE-2023-33659 7.5
NanoMQ v0.17.2 Heap-buffer overflow CVE-2023-33660 7.5
NanoMQ v0.17.2 Heap use after free CVE-2023-33657 7.5
NanoMQ v0.17.2 Memory leak CVE-2023-33656 5.5

Table 8
New vulnerabilities found by CSFuzzer.

Subject Average Branch Coverage Average State Coverage
CSFuzzerx CSFuzzer Improvement CSFuzzerx CSFuzzer Improvement

PureFTPD 1364 1404 2.9% 254 327 22.3%
BFTPD 507 512 1.0% 2260 2058 -9.8%
ippsample 3238 3273 1.1% 488 712 31.5%
CUPS 3985 4121 3.3% 1851 2541 27.2%
OpenSSL 12295 12659 2.9% 755 766 1.4%
Live555 2658 2798 5.0% 283 553 48.8%
DCMTK 8371 8615 2.8% 244 334 27.0%
Exim 3289 3282 -0.2% 353 526 32.9%
Dnsmasq 1137 1184 4.0% 654 663 1.4%
Curl 8360 9641 13.3% 1357 2112 35.8%
MbedTLS 1561 1563 0.1% 259 261 0.8%
TinyDTLS 620 620 0.0% 362 446 18.8%

Avg: 3.0% Avg: 19.8%

Table 9
Average branch and state coverage results for ablation study
in CSFuzzerx and CSFuzzer over 24 hours.

6.6. Ablation Study (RQ5)
To understand whether classifying state variables into

pstate-variables and sstate-variables to construct CAST-
Coverage has an impact on the performance of CSFuzzer,
we implemented another fuzzer named CSFuzzerx, which
identified and tracked same state variables as CSFuzzer but
does not classify state variables and uses ST-Coverage to
construct state feedback. Table 9 shows the average branch
and state coverage results after 24 hours for CSFuzzer and
CSFuzzerx. Overall, CSFuzzer achieves 3.0% more branch
coverage and 19.8% more state coverage than CSFuzzerx,
demonstrating that categorizing state variables into two cat-
egories for constructing CAST-Coverage as state feedback
is more effective than directly using all state variables to
guide the exploration of the code and state space of protocol
implementations. This is because it effectively distinguishes
the same sub-state transitions in different protocol states and
improves the sensitivity of state feedback.

On the other hand, we also analyzed in detail the impact
of each heuristic approach introduced in Section 4.2 on the
identification of the state variable results. Table 10 shows the
statistical results of the number of state variables identified
in each step, where Step1 corresponds to Section 4.2.2, Step2
corresponds to Section 4.2.3, including three approaches,
e.g., Indirect indicates the code features in the indirect call
statement, Function indicates the function name character-
istic of branch statements, Complexity indicates the code
complexity of branch statements. Step3 and Step4 corre-
sponds to Section 4.2.4 and Section 4.2.5, respectively. Step5
corresponds to Section 4.2.6 including two approaches, e.g.,
Substring indicates the sub-string matching algorithm, and
Word2vec indicates the cosine similarity algorithm. Overall,

Subject Step1 Step2 Step3 Step4 Step5 TotalIndirect Function Complexity Substring Word2vec
PureFTPD 131 0 2 0 1 1 10 0 12
BFTPD 88 4 1 0 1 1 7 0 12
ippsample 365 0 11 3 8 1 56 2 72
CUPS 596 0 27 3 12 1 96 4 130
OpenSSL 5898 60 144 1 162 3 470 5 680
Live555 467 0 5 2 3 1 122 3 132
DCMTK 1849 0 22 1 5 1 77 2 102
Exim 705 1 28 2 25 1 166 4 201
Dnsmasq 244 0 0 2 2 0 87 0 89
Curl 4135 4 80 2 21 8 538 7 631
MbedTLS 832 0 13 2 4 1 109 0 122
TinyDTLS 86 0 3 0 3 1 14 0 17

Table 10
Results of the state variables identified by each step in
CSFuzzer.

each heuristic approach contributes to the identification of
state variables to varying degrees, where Step1 identifies the
range of potential state variables from a huge number of
variables, Step2 and Step3 then identifies a few candidate
pstate-variables, which are then confirmed by Step4. Lastly,
Step5 identifies the remaining sstate-variables, proving the
effectiveness of our approach.

7. Threats to Validity
The first concern is external validity, i.e., the generality.

CSFuzzer is based on the investigation and analysis of the 40
protocol implementations presented in Table 1. It is neces-
sary to mention that seven of the protocol implementations
used for evaluation overlap with the 40 implementations
investigated. In addition, due to software implementations’
variability, CSFuzzer may not apply to subjects we have not
tested. By analyzing existing work [21, 36], our evaluation
has maximally covered more types of key protocol imple-
mentations, and in particular, we have additionally added
five protocol implementations that were not in the scope of
the initial study in Table 1 and found nine new vulnerabili-
ties, further validating the effectiveness of CSFuzzer.

The second concern is internal validity, i.e., how sys-
tematic errors can be minimized in the study. One of the
internal threats of fuzzing experiments is the selection of
initial test cases [23]. To ensure the validity, we used off-
the-shelf corpora, such as the seeds provided by default by
AFLNet and other fuzzers. In addition, considering that the
performance differences of different fuzzers may affect the
fair evaluation of different state-guided strategies, we added
experiments with 1 million fuzzing iterations to ensure the
fairness and reliability of the evaluation results.

8. Related Work
Recent years have witnessed significant advances in

protocol fuzzing, which can be broadly classified into two
categories: black-box and grey-box approaches.
Black-box Protocol Fuzzing. Black-box fuzzing is particu-
larly well-suited for protocol testing, as it does not require
source code access or instrumentation, making it applicable
to both closed-source implementations and open-source im-
plementations written in different languages. Peach [11] is a
comprehensive black-box fuzzing framework that supports

First Author et al.: Preprint submitted to Elsevier Page 13 of 17

Short Title of the Article

testing of different types of network protocols. Bleem [35]
performs mutations on packet sequences exchanged between
protocol clients and servers and introduces state feedback
mechanisms for black-box fuzzing. RESOLVERFUZZ [55]
uses differential testing to test DNS resolvers to find non-
crash vulnerabilities in them. LLMIF [48] incorporates large
language models into IoT protocol fuzzing to extract Zigbee
protocol information and infer device response states. SP-
Fuzz [53] uses protocol state and data models to generate
stateful paths and then divide them into discrete tasks for as-
signment to improve fuzzing performance. DY Fuzzing [18]
employs formal models to explore the logic of cryptographic
protocols and detect design-level flaws. While black-box
fuzzing has shown encouraging results, its lack of internal
program insight limits its ability to effectively guide explo-
ration through program logic and protocol states.
Grey-box Protocol Fuzzing. In contrast, grey-box fuzzing
leverages internal program feedback (e.g., code coverage)
to guide input generation and mutation. Coverage-guided
fuzzers such as AFL [2], libFuzzer [9], and Enfuzz [22] can
be applied to protocol fuzzing, but their lack of protocol state
awareness limits their effectiveness. To address this, sev-
eral works have introduced protocol-specific state feedback.
AFLNet and its variants [41, 42, 34] regard the response
codes in packets to construct state feedback, which suffers
from the problem of uninformative response codes [21].
StateAFL [38] infers the protocol state by analyzing mem-
ory contents, which ignores state changes during packet
processing. IJON [20] proposes to annotate state variables
manually. SGFUZZ [21] recognizes enum-type variables
and tracks state values along the state transition path, which
does not consider other non-enum-type variables and may
cause seed explosion. NSFuzz [42] only focuses on variables
that represent the state of network services (usually a very
small number) to increase fuzzing performance, but does
not utilize these state variables to guide state space explo-
ration. Logos [51] collects log information about the proto-
col implementation and embeds it into a high-level vector
space for semantic representation, dynamically maintaining
semantic coverage to guide the drawing of the exploration
space. CSFuzzer extends this line of research by identifying
two categories of state variables and introducing CAST-
Coverage, which provides more sensitive feedback while
mitigating seed explosion.

Additionally, many works focus on improving the overall
performance of grey-box fuzzing by optimizing I/O per-
formance. MultiFuzz [54] enhances desock for improved
network fuzzing. SNPSFuzzer [32] and Nyx-Net [47] use
snapshot mechanisms for state preservation and recovery.
NSFuzz [42] modifies the forkserver in AFLNet to better
synchronize with signal-based feedback. SnapFuzz [19] op-
timizes network communication and file I/O with an in-
memory file system, while HNPFuzzer [30] further reduces
message-passing overhead by leveraging shared memory.

9. Conclusion
In this paper, we analyzed the composition of the proto-

col state space and proposed a novel context-aware state-
guided fuzzing approach CSFuzzer. CSFuzzer classifies
state variables into two categories through state contexts
and automatically identifies them through static and dynamic
analysis. Then CSFuzzer uses a new coverage metric named
context-aware state transition coverage to track state values
and applies a rarity-preferred energy scheduling strategy to
facilitate state exploration. CSFuzzer has higher coverage
accuracy and can mitigate seed explosion. We implemented
an CSFuzzer prototype, and experiments show that it could
achieve higher code and state coverage than existing ap-
proaches and find most vulnerabilities faster than others.
Besides, CSFuzzer found 10 zero-day vulnerabilities.

CRedit authorship contribution statement
Xiangpu Song: Investigation, Methodology, Software,

Validation, Writing – original draft, Writing – review &
editing. Yingpei Zeng: Methodology, Validation, Writing
– review & editing, Supervision. Jianliang Wu: Methodol-
ogy, Writing – review & editing. Hao Li: Writing – review
& editing. Chaoshun Zuo: Writing – review & editing.
Qingchuan Zhao: Writing – review & editing. Shanqing
Guo: Methodology, Validation, Supervision, Writing – re-
view & editing.

Acknowledgments
This work is supported by the National Natural Science

Foundation of China (No. 62372268), the Major Scien-
tific and Technological Innovation Projects of Shandong
Province, China (No. 2024CXGC010114), and the Shan-
dong Provincial Natural Science Foundation, China (No.
ZR2022LZH013, No. ZR2021LZH007). It is also supported
in part by the Zhejiang Provincial Natural Science Founda-
tion of China (No. LY22F020022) and the National Natural
Science Foundation of China (No. 61902098).

Appendix.A Statistical difference in coverage
Table A.1 and Table A.2 present the p-values obtained

from the Mann-Whitney U-test, comparing the average
branch and state coverage of each fuzzer after 24 hours and
1 million fuzzing iterations, respectively. The terms p1, p2,
p3, p4, p5, p6, and p7 represent the differences between
CSFuzzer and AFL, AFL++, AFLNet, IJON, StateAFL,
SGFUZZ, and ChatAFL, respectively. Overall, CSFuzzer
performs better than the other fuzzers in most subjects, and
the corresponding p-values are mostly less than 0.05, with
the results possessing significant differences.

Appendix.B Detailed bug identifier in
evaluation

Table B.1 shows the detailed bug descriptions corre-
sponding to the vulnerability identifiers and types in our

First Author et al.: Preprint submitted to Elsevier Page 14 of 17

Short Title of the Article

Subject Branch Coverage for 24 hours Branch Coverage for 1 million iterations
p1 p2 p3 p4 p5 p6 p7 p8 p1 p2 p3 p4 p5 p6 p7 p8

PureFTPD 2.4 ∗ 10−4 4.4 ∗ 10−4 1.8 ∗ 10−4 4.9 ∗ 10−2 1.8 ∗ 10−4 1.3 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 3.1 ∗ 10−2 4.6 ∗ 10−3 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.3 ∗ 10−4 1.8 ∗ 10−4 1.7 ∗ 10−2

BFTPD 1.8 ∗ 10−4 2.3 ∗ 10−2 2.4 ∗ 10−4 1.1 ∗ 10−2 1.8 ∗ 10−4 1.3 ∗ 10−4 1.7 ∗ 10−3 3.3 ∗ 10−4 2.5 ∗ 10−3 3.2 ∗ 10−4 4.7 ∗ 10−2 3.1 ∗ 10−2 4.6 ∗ 10−3 1.3 ∗ 10−4 4.9 ∗ 10−2 1.5 ∗ 10−1

ippsample 7.3 ∗ 10−3 1.3 ∗ 10−2 1.8 ∗ 10−4 3.1 ∗ 10−2 - 1.8 ∗ 10−4 1.8 ∗ 10−4 - 2.8 ∗ 10−3 2.3 ∗ 10−1 1.8 ∗ 10−4 1.8 ∗ 10−4 - 1.8 ∗ 10−4 1.8 ∗ 10−4 -
CUPS 1.3 ∗ 10−3 6.4 ∗ 10−2 1.8 ∗ 10−4 4.6 ∗ 10−3 - 8.7 ∗ 10−5 1.8 ∗ 10−4 - 4.6 ∗ 10−1 4.1 ∗ 10−2 1.8 ∗ 10−4 3.2 ∗ 10−4 - 1.6 ∗ 10−4 1.8 ∗ 10−4 -
OpenSSL 3.3 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 - 1.8 ∗ 10−4 1.5 ∗ 10−3 2.8 ∗ 10−2 2.7 ∗ 10−2 1.8 ∗ 10−4 1.7 ∗ 10−3 6.5 ∗ 10−1 - 3.8 ∗ 10−1

Live555 1.0 ∗ 10−3 3.2 ∗ 10−3 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 2.2 ∗ 10−3 2.4 ∗ 10−2 1.8 ∗ 10−4 2.5 ∗ 10−4 2.6 ∗ 10−2 1.8 ∗ 10−4 1.8 ∗ 10−4 4.6 ∗ 10−2

DCMTK 3.8 ∗ 10−2 1.8 ∗ 10−4 1.8 ∗ 10−4 2.6 ∗ 10−2 1.8 ∗ 10−4 1.8 ∗ 10−4 - 1.8 ∗ 10−4 1.8 ∗ 10−4 5.4 ∗ 10−2 1.8 ∗ 10−4 6.4 ∗ 10−2 1.8 ∗ 10−4 1.1 ∗ 10−4 - 1.8 ∗ 10−4

Exim 9.6 ∗ 10−2 1.8 ∗ 10−4 1.8 ∗ 10−4 2.4 ∗ 10−4 1.4 ∗ 10−2 1.1 ∗ 10−4 1.0 ∗ 10−2 1.8 ∗ 10−4 4.4 ∗ 10−4 1.5 ∗ 10−3 5.8 ∗ 10−4 2.4 ∗ 10−4 3.6 ∗ 10−3 1.1 ∗ 10−4 7.2 ∗ 10−3 1.8 ∗ 10−4

Dnsmasq 2.1 ∗ 10−2 7.7 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 - - 3.3 ∗ 10−4 6.2 ∗ 10−1 2.4 ∗ 10−2 1.7 ∗ 10−1 4.4 ∗ 10−4 2.4 ∗ 10−4 - - 1.3 ∗ 10−1

Curl 1.8 ∗ 10−4 1.2 ∗ 10−1 - 1.8 ∗ 10−4 - 1.8 ∗ 10−4 - - 3.8 ∗ 10−4 3.3 ∗ 10−4 - 5.0 ∗ 10−4 - 1.5 ∗ 10−4 - -
MbedTLS 8.8 ∗ 10−1 2.4 ∗ 10−2 - 6.4 ∗ 10−3 - 2.6 ∗ 10−2 - - 8.2 ∗ 10−1 1.4 ∗ 10−1 - 2.8 ∗ 10−2 - 5.7 ∗ 10−1 - -
TinyDTLS 8.8 ∗ 10−1 8.5 ∗ 10−1 1.8 ∗ 10−4 3.4 ∗ 10−2 1.8 ∗ 10−4 - - 1.8 ∗ 10−4 2.1 ∗ 10−3 1.1 ∗ 10−3 1.8 ∗ 10−4 1.1 ∗ 10−3 1.8 ∗ 10−4 - - 2.8 ∗ 10−2

Table A.1
The p-value of branch coverage for 24 hours and 1 million iterations of fuzzing campaigns.

Subject State Coverage for 24 hours State Coverage for 1 million iterations
p1 p2 p3 p4 p5 p6 p7 p8 p1 p2 p3 p4 p5 p6 p7 p8

PureFTPD 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.7 ∗ 10−3 1.8 ∗ 10−4 8.7 ∗ 10−5 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.1 ∗ 10−1 1.8 ∗ 10−4 1.3 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4

BFTPD 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.1 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4

ippsample 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.5 ∗ 10−3 - 1.3 ∗ 10−4 1.8 ∗ 10−4 - 1.8 ∗ 10−4 8.5 ∗ 10−1 1.8 ∗ 10−4 3.3 ∗ 10−4 - 1.8 ∗ 10−4 1.8 ∗ 10−4 -
CUPS 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 - 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 - 1.8 ∗ 10−4 1.8 ∗ 10−4 -
OpenSSL 4.5 ∗ 10−2 6.9 ∗ 10−2 9.9 ∗ 10−4 4.9 ∗ 10−2 4.4 ∗ 10−4 3.3 ∗ 10−4 - 3.3 ∗ 10−4 4.3 ∗ 10−2 1.1 ∗ 10−3 8.2 ∗ 10−1 2.3 ∗ 10−2 1.3 ∗ 10−3 5.7 ∗ 10−4 - 4.4 ∗ 10−4

Live555 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 4.4 ∗ 10−4 3.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.0 ∗ 10−3 4.4 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4

DCMTK 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 2.0 ∗ 10−3 1.8 ∗ 10−4 1.8 ∗ 10−4 - 1.8 ∗ 10−4 1.8 ∗ 10−4 3.6 ∗ 10−3 1.8 ∗ 10−4 2.0 ∗ 10−3 1.8 ∗ 10−4 1.8 ∗ 10−4 - 1.8 ∗ 10−4

Exim 1.3 ∗ 10−2 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 4.6 ∗ 10−4 4.4 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.2 ∗ 10−3 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4

Dnsmasq 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 1.8 ∗ 10−4 - - 1.8 ∗ 10−4 1.4 ∗ 10−3 2.5 ∗ 10−4 1.8 ∗ 10−4 4.4 ∗ 10−4 1.8 ∗ 10−4 - - 1.8 ∗ 10−4

Curl 1.8 ∗ 10−4 1.8 ∗ 10−4 - 1.8 ∗ 10−4 - 1.8 ∗ 10−4 - - 2.3 ∗ 10−4 1.8 ∗ 10−4 - 4.6 ∗ 10−4 - 1.8 ∗ 10−4 - -
MbedTLS 2.2 ∗ 10−1 1.8 ∗ 10−4 - 1.8 ∗ 10−4 - 1.8 ∗ 10−4 - - 2.1 ∗ 10−1 1.8 ∗ 10−4 - 1.8 ∗ 10−4 - 1.8 ∗ 10−4 - -
TinyDTLS 8.7 ∗ 10−1 7.2 ∗ 10−1 1.8 ∗ 10−4 2.6 ∗ 10−2 1.8 ∗ 10−4 - - 1.8 ∗ 10−4 8.6 ∗ 10−1 6.7 ∗ 10−1 1.8 ∗ 10−4 1.3 ∗ 10−2 1.8 ∗ 10−4 - - 1.8 ∗ 10−4

Table A.2
The p-value of state coverage for 24 hours and 1 million iterations of fuzzing campaigns.

vulnerability detection efficiency experiments in Section 6.5.
Since some vulnerabilities cannot determine their vulnera-
bility identifiers, we use the top three layers of the function
stack provided by ASAN as the description followed by [33].

Appendix.C Threshold Sensitivity Analysis
We set three thresholds for the code feature analysis

approach as mentioned in Section 4.2.3 and Section 6.1.
The threshold 2 and threshold 3 have a greater impact on
the identification results, indicating the number of most
branches and code complexity, respectively. Thus, we evalu-
ated the impact of the setting of these two thresholds on the
state variable identification results.

Table C.1 shows the results of the sensitivity analysis. P1
and P2 indicate the branches and code complexity respec-
tively. # indicates that the results are normal, G# indicates
that it affects the number of variables to be analyzed in
subsequent dynamic analysis, and indicates that it will
lead to incorrect final results. We chose 40% and 100% as a
comparison for P1 because these three values incrementally
represent a few, most, and all scenarios. We then chose 10
and 50 as a comparison for P2 since they represent the two
code complexity scenarios that are ideal and untestable in
practice [3], respectively.

Overall, for P1, 70% can cover all the code features of
most protocol programs with the best generalization ability
and does not cause the results to be too broad or too limited
to affect the recognition accuracy, as 40% or 100% shows.
For P2, although the results are the same for the value
30 and below, we still choose 30 instead of 10 to avoid
causing potential incorrect results and increasing the cost

of dynamic analysis, and 30 is also a public threshold in
software analysis indicating high code complexity [3, 25].

References
[1] Advanced coverage metrics for object-oriented soft-

ware. https://citeseerx.ist.psu.edu/document?doi=

ae7e36d6bcaf877c35870a85262e280127db6188, Accessed on 2024-10-5.
[2] american fuzzy lop. https://lcamtuf.coredump.cx/afl/. Accessed on

2022-11-3.
[3] Avoiding spaghetti code. https://course.ece.cmu.edu/~ece642/

lectures/09_SpaghettiCode.pdf, Accessed on 2023-9-14.
[4] Codeql. https://codeql.github.com/. Accessed on 2023-5-19.
[5] curl. https://curl.se/, Accessed on 2022-12-31.
[6] Gdb: The gnu project debugger. https://www.sourceware.org/gdb/,

Accessed on 2022-12-31.
[7] Google word2vec. https://code.google.com/archive/p/word2vec/.

Accessed on 2022-10-8.
[8] Introducing webm, an open web media project, webm project.

https://webcitation.org/67CpWxl6p?url=http://blog.webmproject.

org/2010/05/introducing-webm-open-web-media-project.html.
Accessed on 2023-12-9.

[9] libfuzzer – a library for coverage-guided fuzz testing. http://llvm.

org/docs/LibFuzzer.html. Accessed on 2022-11-3.
[10] Mpeg program stream. https://en.wikipedia.org/wiki/MPEG_program_

stream. Accessed on 2023-12-9.
[11] Peach fuzzer. https://github.com/MozillaSecurity/peach. Accessed

on 2022-11-3.
[12] Preeny. https://github.com/zardus/preeny. Accessed on 2022-11-3.
[13] Rfc 2326: Real time streaming protocol (rtsp). https://www.

rfc-editor.org/rfc/rfc2326.html, Accessed on 2022-12-31.
[14] Rfc 2565 - internet printing protocol/1.0: Encoding and transport.

https://datatracker.ietf.org/doc/html/rfc2565. Accessed on 2023-
12-9.

[15] An ultra-lightweight and blazing-fast messaging broker/bus for iot
edge & sdv. https://github.com/nanomq/nanomq. Accessed on 2023-
12-9.

[16] Whole program llvm: wllvm ported to go. https://github.com/

SRI-CSL/gllvm. Accessed on 2022-7-25.

First Author et al.: Preprint submitted to Elsevier Page 15 of 17

https://citeseerx.ist.psu.edu/document?doi=ae7e36d6bcaf877c35870a85262e280127db6188
https://citeseerx.ist.psu.edu/document?doi=ae7e36d6bcaf877c35870a85262e280127db6188
https://lcamtuf.coredump.cx/afl/
https://course.ece.cmu.edu/~ece642/lectures/09_SpaghettiCode.pdf
https://course.ece.cmu.edu/~ece642/lectures/09_SpaghettiCode.pdf
https://codeql.github.com/
https://curl.se/
https://www.sourceware.org/gdb/
https://code.google.com/archive/p/word2vec/
https://webcitation.org/67CpWxl6p?url=http://blog.webmproject.org/2010/05/introducing-webm-open-web-media-project.html
https://webcitation.org/67CpWxl6p?url=http://blog.webmproject.org/2010/05/introducing-webm-open-web-media-project.html
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://en.wikipedia.org/wiki/MPEG_program_stream
https://en.wikipedia.org/wiki/MPEG_program_stream
https://github.com/MozillaSecurity/peach
https://github.com/zardus/preeny
https://www.rfc-editor.org/rfc/rfc2326.html
https://www.rfc-editor.org/rfc/rfc2326.html
https://datatracker.ietf.org/doc/html/rfc2565
https://github.com/nanomq/nanomq
https://github.com/SRI-CSL/gllvm
https://github.com/SRI-CSL/gllvm

Short Title of the Article

Subject Bug Complete Bug ID or Stack Information

DCMTK

942 DCMTK Bug Tracker#942
LEAK [’operator new’, ’newValueField’, ’loadValue’]
SEGV [’parseUserInfo’, ’parseAssociate’, ’AE_6_ExamineAssociateRequest’]
CVE CVE-2023-50656
STACK [’OFStandard::my_strlcpy’, ’OFStandard::strlcpy’, ’DU_getStringDOElement’]

Live555

CVE1 CVE-2021-38382
CVE2 CVE-2021-39282
CVE3 CVE-2018-4013
CVE4 CVE-2021-38381

Dnsmasq

CVE CVE-2017-14491
STACK1 [’add_resource_record’, ’answer_request’, ’receive_query’]
STACK2 [’questions_crc’, ’forward_query’, ’receive_query’]
HEAP1 [’extract_name’, ’questions_crc’, ’forward_query’]
HEAP2 [’__interceptor_vsprintf’, ’__interceptor_sprintf’, ’extract_name’]
HEAP3 [’extract_name’, ’extract_request’, ’receive_query’]

TinyDTLS

544819 Eclipse Bug Tracker#544819
STACK1 [’dtls_sha256_transform’, ’dtls_sha256_update’, ’dtls_hash_update’]
STACK2 [’dtls_uint16_to_int’, ’dtls_update_parameters’, ’handle_handshake_msg’]
STACK3 [’__interceptor_memcpy’, ’dtls_sha256_update’, ’dtls_hash_update’]

ippsample CNVD CNVD-2022-44199
CUPS CVE CVE-2023-32324

Table B.1
Detailed information about bugs found by fuzzers in evaluation.

Subject P1: 40% P1: 70% P1: 100% P2: 10 P2: 30 P2: 50
PureFTPD # # # # #
ippsample G# # # # G#

CUPS G# # # # G#
OpenSSL G# # # # #
Live555 # # G# # # #
DCMTK # # # # # #

Exim # # # # # #
Dnsmasq # # # # # #

Curl # # # #
MbedTLS # # # # #
TinyDTLS # # # # # #

Table C.1
Sentivity analysis for code feature analysis.

[17] Bernhard K. Aichernig, Edi Muškardin, and Andrea Pferscher.
Learning-based fuzzing of iot message brokers. In 2021 14th IEEE
Conference on Software Testing, Verification and Validation (ICST),
pages 47–58, 2021.

[18] Max Ammann, Lucca Hirschi, and Steve Kremer. Dy fuzzing: formal
dolev-yao models meet cryptographic protocol fuzz testing. In 2024
IEEE Symposium on Security and Privacy (SP), pages 1481–1499.
IEEE, 2024.

[19] Anastasios Andronidis and Cristian Cadar. Snapfuzz: An effi-
cient fuzzing framework for network applications. arXiv preprint
arXiv:2201.04048, 2022.

[20] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten
Holz. Ijon: Exploring deep state spaces via fuzzing. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 1597–1612. IEEE,
2020.

[21] Jinsheng Ba, Marcel Böhme, Zahra Mirzamomen, and Abhik Roy-
choudhury. Stateful greybox fuzzing. In 31st USENIX Security
Symposium (USENIX Security 22), pages 3255–3272, Boston, MA,
August 2022. USENIX Association.

[22] Nils Bars, Moritz Schloegel, Nico Schiller, Lukas Bernhard, and
Thorsten Holz. No peer, no cry: Network application fuzzing via fault
injection. In Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, pages 750–764, 2024.

[23] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed greybox fuzzing. In Proceedings of the 2017
ACM SIGSAC conference on computer and communications security,
pages 2329–2344, 2017.

[24] Dustin Boswell and Trevor Foucher. The Art of Readable Code:
Simple and Practical Techniques for Writing Better Code. " O’Reilly
Media, Inc.", 2011.

[25] Bill Curtis, Jay Sappidi, and Jitendra Subramanyam. An evaluation of
the internal quality of business applications: Does size matter? New
York, NY, USA, 2011. Association for Computing Machinery.

[26] Cristian Daniele, Seyed Behnam Andarzian, and Erik Poll. Fuzzers
for stateful systems: Survey and research directions. ACM Computing
Surveys, 56(9):1–23, 2024.

[27] Andrea Fioraldi, Daniele Cono D’Elia, and Davide Balzarotti. The
Use of Likely Invariants as Feedback for Fuzzers. In 30th USENIX
Security Symposium (USENIX Security 21), pages 2829–2846, 2021.

[28] Andrea Fioraldi, Daniele Cono D’Elia, and Emilio Coppa. Weizz:
Automatic grey-box fuzzing for structured binary formats. In Pro-
ceedings of the 29th ACM SIGSOFT international symposium on
software testing and analysis, pages 1–13, 2020.

[29] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
AFL++: Combining incremental steps of fuzzing research. In 14th
USENIX Workshop on Offensive Technologies (WOOT 20). USENIX
Association, August 2020.

[30] Junsong Fu, Shuai Xiong, Na Wang, Ruiping Ren, Ang Zhou, and
Bharat K Bhargava. A framework of high-speed network protocol
fuzzing based on shared memory. IEEE Transactions on Dependable
and Secure Computing, 21(4):2779–2798, 2023.

[31] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael
Hicks. Evaluating fuzz testing. In Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security, pages
2123–2138, 2018.

[32] Junqiang Li, Senyi Li, Gang Sun, Ting Chen, and Hongfang Yu.
Snpsfuzzer: A fast greybox fuzzer for stateful network protocols using
snapshots. arXiv preprint arXiv:2202.03643, 2022.

[33] Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-Han Lee,
Yueyao Chen, Chenyang Lyu, Chunming Wu, Raheem Beyah, Peng
Cheng, Kangjie Lu, and Ting Wang. UNIFUZZ: A holistic and prag-
matic metrics-driven platform for evaluating fuzzers. In Proceedings
of the 30th USENIX Security Symposium, 2021.

[34] Dongge Liu, Van-Thuan Pham, Gidon Ernst, Toby Murray, and Ben-
jamin I.P. Rubinstein. State selection algorithms and their impact
on the performance of stateful network protocol fuzzing. In 2022
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 720–730, 2022.

[35] Zhengxiong Luo, Junze Yu, Feilong Zuo, Jianzhong Liu, Yu Jiang,
Ting Chen, Abhik Roychoudhury, and Jiaguang Sun. Bleem: Packet
sequence oriented fuzzing for protocol implementations. In 32st
USENIX Security Symposium (USENIX Security 23). USENIX As-
sociation, 2023.

[36] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoud-
hury. Large language model guided protocol fuzzing. In Proceedings
of the 31st Annual Network and Distributed System Security Sympo-
sium (NDSS), 2024.

First Author et al.: Preprint submitted to Elsevier Page 16 of 17

Short Title of the Article

[37] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space, 2013.

[38] Roberto Natella. Stateafl: Greybox fuzzing for stateful network
servers. Empirical Software Engineering, 27(7):1–31, 2022.

[39] Maria Leonor Pacheco, Max von Hippel, Ben Weintraub, Dan Gold-
wasser, and Cristina Nita-Rotaru. Automated attack synthesis by ex-
tracting finite state machines from protocol specification documents.
In 2022 IEEE Symposium on Security and Privacy (SP), pages 51–68.
IEEE, 2022.

[40] Yan Pan, Wei Lin, Liang Jiao, and Yuefei Zhu. Model-based grey-box
fuzzing of network protocols. Security and Communication Networks,
2022, 2022.

[41] Van-Thuan Pham, Marcel Bohme, and Abhik Roychoudhury.
AFLNET: A Greybox Fuzzer for Network Protocols. In 2020 IEEE
13th International Conference on Software Testing, Validation and
Verification (ICST), pages 460–465, Porto, Portugal, October 2020.
IEEE.

[42] Shisong Qin, Fan Hu, Zheyu Ma, Bodong Zhao, Tingting Yin, and
Chao Zhang. Nsfuzz: Towards efficient and state-aware network
service fuzzing. ACM Transactions on Software Engineering and
Methodology, 2023.

[43] Krishan Sabnani and Anton Dahbura. A new technique for generating
protocol test. ACM SIGCOMM Computer Communication Review,
15(4):36–43, 1985.

[44] Felice Salviulo and Giuseppe Scanniello. Dealing with identifiers and
comments in source code comprehension and maintenance: Results
from an ethnographically-informed study with students and profes-
sionals. In Proceedings of the 18th international conference on
evaluation and assessment in software engineering, pages 1–10, 2014.

[45] Miro Samek. Practical statecharts in c/c++: Quantum programming
for embedded systems with cdrom. pages 57–59. CRC Press, 2002.

[46] Moritz Schloegel, Nils Bars, Nico Schiller, Lukas Bernhard, Tobias
Scharnowski, Addison Crump, Arash Ale-Ebrahim, Nicolai Bissantz,
Marius Muench, and Thorsten Holz. Sok: Prudent evaluation prac-
tices for fuzzing. In 2024 IEEE Symposium on Security and Privacy
(SP), pages 1974–1993. IEEE, 2024.

[47] Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali Ab-
basi, and Thorsten Holz. Nyx-net: network fuzzing with incremental
snapshots. In Proceedings of the Seventeenth European Conference
on Computer Systems, pages 166–180, 2022.

[48] Jincheng Wang, Le Yu, and Xiapu Luo. Llmif: Augmented large
language model for fuzzing iot devices. In 2024 IEEE Symposium
on Security and Privacy (SP), pages 881–896. IEEE, 2024.

[49] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and Chengyu Song.
Be sensitive and collaborative: Analyzing impact of coverage metrics
in greybox fuzzing. In 22nd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2019), pages 1–15, 2019.

[50] Arthur Henry Watson, Dolores R Wallace, and Thomas J McCabe.
Structured testing: A testing methodology using the cyclomatic com-
plexity metric. 500(235), 1996.

[51] Feifan Wu, Zhengxiong Luo, Yanyang Zhao, Qingpeng Du, Junze
Yu, Ruikang Peng, Heyuan Shi, and Yu Jiang. Logos: Log guided
fuzzing for protocol implementations. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 1720–1732, 2024.

[52] Shengbo Yan, Chenlu Wu, Hang Li, Wei Shao, and Chunfu Jia.
Pathafl: Path-coverage assisted fuzzing. In Proceedings of the 15th
ACM Asia Conference on Computer and Communications Security,
pages 598–609, 2020.

[53] Junze Yu, Zhengxiong Luo, Fangshangyuan Xia, Yanyang Zhao,
Heyuan Shi, and Yu Jiang. Spfuzz: Stateful path based parallel
fuzzing for protocols in autonomous vehicles. In Proceedings of the
61st ACM/IEEE Design Automation Conference, pages 1–6, 2024.

[54] Yingpei Zeng, Mingmin Lin, Shanqing Guo, Yanzhao Shen, Tingting
Cui, Ting Wu, Qiuhua Zheng, and Qiuhua Wang. Multifuzz: a
coverage-based multiparty-protocol fuzzer for iot publish/subscribe
protocols. Sensors, 20(18):5194, 2020.

[55] Qifan Zhang, Xuesong Bai, Xiang Li, Haixin Duan, Qi Li, and Zhou
Li. Resolverfuzz: Automated discovery of dns resolver vulnerabilities
with query-response fuzzing. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 4729–4746, 2024.

[56] Xiaohan Zhang, Cen Zhang, Xinghua Li, Zhengjie Du, Bing Mao,
Yuekang Li, Yaowen Zheng, Yeting Li, Li Pan, Yang Liu, et al. A
survey of protocol fuzzing. ACM Computing Surveys, 57(2):1–36,
2024.

[57] Bodong Zhao, Zheming Li, Shisong Qin, Zheyu Ma, Ming Yuan,
Wenyu Zhu, Zhihong Tian, and Chao Zhang. Statefuzz: System Call-
Based State-Aware Linux Driver Fuzzing. In 31st USENIX Security
Symposium (USENIX Security 22), pages 3273–3289, 2022.

[58] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing:
a survey for roadmap. ACM Computing Surveys (CSUR), 54(11s):1–
36, 2022.

First Author et al.: Preprint submitted to Elsevier Page 17 of 17

